Applicability Assessment of GFED4 and GFED5 on Forest Fires in Chinese Mainland and Its Fire-Scale Patterns Change
Abstract
Highlights
- GFED4 shows strong agreement with statistical data of forest burned areas in China, especially in high-fire years and spring.
- A clear decline in large-fire burned area, while a significant increase in small fires.
- GFED4 provides reliable monitoring of large forest fires, while GFED5 is essential for detecting small fires.
- The GFED burned area products require additional validation across multiple global regions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Statistical Data
2.2.2. Product Data
2.2.3. LUCC Data
2.3. Research Method
2.3.1. Statistical Metrics
2.3.2. Linear Trend Analysis
2.3.3. Mann–Kendall Nonparametric Test
2.3.4. Spatial Autocorrelation Analysis
- (1)
- Global Spatial Autocorrelation
- (2)
- Local Spatial Autocorrelation
3. Results
3.1. Evaluation of GFED4 Applicability for Forest Fire Burned Areas in China
3.1.1. Annual-Scale Analysis
3.1.2. Seasonal-Scale Analysis
3.1.3. Monthly Scale Analysis
3.1.4. Provincial Scale Analysis
3.2. Spatiotemporal Differentiation Characteristics of Large and Small Fires
3.2.1. Definition of Large and Small Fires
3.2.2. Spatiotemporal Variation Characteristics of Large and Small Fires
3.3. Spatial Autocorrelation
3.3.1. Global Spatial Autocorrelation Analysis
3.3.2. Local Spatial Autocorrelation Analysis
4. Discussion
4.1. Feasibility Analysis of GFED4 for Representing “Large Fires”
4.2. Discussion on Causes of Regional and Seasonal Fire Variations
- (1)
- Regional Variations in Climate and Weather Conditions
- (2)
- Variations in Land Use and Vegetation Structure
- (3)
- Human Activities and Fire Management Differences
- (4)
- Fundamental Challenges of Satellite Fire Monitoring in Arid Regions
4.3. Research Limitations
5. Conclusions
- (1)
- GFED4 demonstrates good applicability at the national level and in major fire-prone regions. On a national scale, GFED4 shows high consistency with the interannual variation trend of statistical data (CC = 0.83) and accurately captures the characteristics of high-fire years (e.g., 2003). In high-frequency fire regions such as Northeast China, North China, and South Central China, GFED4 performs particularly well, with correlation coefficients generally exceeding 0.78. North China achieves the highest agreement (CC = 0.94). However, GFED4 exhibits systematic overestimation in the arid Northwest region, reflecting the product’s broader challenges in accurately mapping fires in non-forested, arid ecosystems. In contrast, it shows significant underestimation in parts of East and Southwest China.
- (2)
- GFED4 performs best on the temporal scale in spring, while regional variations are observed in summer and autumn. During spring, GFED4 demonstrates the highest accuracy in capturing fire activity patterns across the country and in most regions (e.g., Northeast China, North China, and South Central China), with correlation coefficients exceeding 0.84. In contrast, its performance declines in summer and autumn, particularly in regions such as Northwest and East China, where lower fire intensity leads to increased fluctuations or misjudgments. Monthly scale analysis indicates that GFED4 effectively reproduces the “bimodal” distribution pattern of forest fires in China (peaks in March–May and October–November). However, deviations in peak magnitude persist in certain regions, such as East and Northwest China.
- (3)
- Spatially, GFED4 performs better in southeastern China but shows limited applicability in the northwest. At the provincial scale, GFED4 exhibits strong agreement with statistical data in southeastern provinces (e.g., Guangdong, Fujian, Yunnan), while its performance is poorest in arid northwestern regions (e.g., Xinjiang, Gansu, Qinghai). Grid-scale analysis further reveals that large fires are predominantly concentrated in Northeast, Southwest, and Central-South China, whereas small fires are widely distributed across the country. However, GFED4 demonstrates notably limited capability in detecting small-fire events.
- (4)
- Large fires show a declining trend, while small fires increase significantly with notable regional variations. From 2001 to 2015, the burned area of large fires in Chinese mainland generally decreased, particularly in Northeast and North China. In contrast, the burned area of small fires increased markedly at a rate of 4.45 × 104 hectares per year, with the most pronounced growth observed in South Central, Northeast, and East China. Provincial statistics indicate that small fires account for over 70% of the total burned area nationwide. In recent years, provinces such as Jilin, Hebei, and Guangdong have even recorded small fires constituting more than 95% of their total burned area, highlighting that small fires have become the dominant form of forest fires in China.
- (5)
- Small fires exhibit stronger spatial clustering characteristics. Spatial correlation analysis reveals that large fires are relatively dispersed in distribution (Moran’s I = 0.139, p = 0.136), while small fires demonstrate significant positive spatial autocorrelation (Moran’s I = 0.270, p < 0.01). Distinct high-value clusters of small fires are observed in South China, Northeast China, and Central China.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Active Fire |
BA | Burned Area |
ESA | European Space Agency |
FireCCI | Fire Climate Change Initiative |
GABAM | Global Annual Burned Area Map |
GBA2000 | Global Burned Area 2000 |
GFED | Global Fire Emissions Database |
GFED4 | Global Fire Emissions Database Version 4 |
GFED5 | Global Fire Emissions Database Version 5 |
GLOBSCAR | Global Burnt Scar satellite product |
JRC | Joint Research Centre |
L3JRC | Level 3 JRC burned area product |
Landsat | Land Satellite |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NBR | Normalized Burn Ratio |
VIIRS | Visible Infrared Imaging Radiometer Suite |
EC | East China |
NC | North China |
NE | Northeast China |
NW | Northwest China |
SC | South Central China |
SW | Southwest China |
Appendix A. Supplementary Analysis on Forest Burned Area Extraction Methods
References
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 2021, 165, 43. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Chen, Y.; Yang, H. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef]
- Samborska, V.; Ritchie, H. Wildfires. Our World in Data 2024. Available online: https://ourworldindata.org/wildfires (accessed on 28 April 2025).
- Archibald, S.; Lehmann, C.E.R.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T.; et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Change Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution characteristics and the influence factors of forest fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanasse, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
- Zhang, T.; Wooster, M.J.; Xu, W. Approaches for synergistically exploiting VIIRS I- and M-Band data in regional active fire detection and FRP assessment: A case study over sub-Saharan Africa. Remote Sens. Environ. 2017, 202, 212–229. [Google Scholar] [CrossRef]
- Simon, M.; Plummer, S.; Fierens, F.; Hoelzemann, J.J.; Arino, O. Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification. J. Geophys. Res. Atmos. 2004, 109, D14S02. [Google Scholar] [CrossRef]
- Tansey, K. Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. J. Geophys. Res. Atmos. 2004, 109, D14S03. [Google Scholar] [CrossRef]
- Tansey, K.; Grégoire, J.-M.; Defourny, P.; Leigh, R.; Pekel, J.-F.; van Bogaert, E.; Bartholomé, E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys. Res. Lett. 2008, 35, L01401. [Google Scholar] [CrossRef]
- Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing an Earth observation product service for the terrestrial carbon community: The GLOBCARBON initiative. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 97–111. [Google Scholar] [CrossRef]
- Alonso-Canas, I.; Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Arneth, A.; Harrison, S.P.; Zaehle, S.; Tsigaridis, K.; Menon, S.; Bartlein, P.J.; Feichter, J.; Korhola, A.; Kulmala, M.; O’Donnell, D.; et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 2010, 3, 525–532. [Google Scholar] [CrossRef]
- Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W.M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; et al. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: Simulating historical global burned area and fire regimes. Geosci. Model Dev. 2014, 7, 2747–2767. [Google Scholar] [CrossRef]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The status and challenge of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Vetrita, Y.; Cochrane, M.A.; Suwarsono; Priyatna, M.; Sukowati, K.A.D.; Khomarudin, M.R. Evaluating accuracy of four MODIS-derived burned area products for tropical peatland and non-peatland fires. Environ. Res. Lett. 2021, 16, 035015. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Chen, Y.; Hall, J.; van Wees, D.; Andela, N.; Hantson, S.; Giglio, L.; van der Werf, G.R.; Morton, D.C.; Randerson, J.T. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 2023, 15, 5227–5259. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Atmos. Chem. Phys. 2012, 12, 9575–9611. [Google Scholar] [CrossRef]
- Ichoku, C.; Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 2014, 14, 6643–6667. [Google Scholar] [CrossRef]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- van Wees, D.; van der Werf, G.R. Modelling Biomass Burning Emissions and the Effect of Spatial Resolution: A Case Study for Africa Based on the Global Fire Emissions Database (GFED). Geosci. Model Dev. 2019, 12, 4681–4703. [Google Scholar] [CrossRef]
- Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G.B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D.V. Population Exposure to Hazardous Air Quality Due to the 2015 Fires in Equatorial Asia. Sci. Rep. 2016, 6, 37074. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Qiao, Z.-Y.; Fang, L.; Zhang, Y.-N.; Yang, J.; Jiang, T.; Yuan, H. Spatio-Temporal Characteristics of Forest Fires in China between 2001 and 2017. Ying Yong Sheng Tai Xue Bao 2020, 31, 55–64. [Google Scholar] [CrossRef]
- Hall, J.V.; Argueta, F.; Giglio, L. Validation of MCD64A1 and FireCCI51 cropland burned area mapping in Ukraine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102443. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z. Assessing the accuracy of MODIS MCD64A1 C6 and FireCCI51 burned area products in Mediterranean ecosystems. Remote Sens. 2022, 14, 602. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Jiao, M.; Kang, Z.; Quan, X. Evaluation of fire products using spatio-temporal clustering method. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Xu, Y.; Huang, X. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens. 2021, 13, 694. [Google Scholar] [CrossRef]
- Wang, X.; Di, Z.; Liu, J. Evaluating the Abilities of Satellite-Derived Burned Area Products to Detect Forest Burning in China. Remote Sens. 2023, 15, 3260. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.C.; Andela, N.; van der Werf, G.R.; Giglio, L.; Randerson, J.T. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 2017, 7, 906–911. [Google Scholar] [CrossRef]
- Tian, X.; Shu, L.; Wang, M.; Zhao, F. Future impacts of climate change on forest fire danger in northeastern China. J. For. Res. 2021, 32, 1239–1249. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yan, Y.; Yu, Y.; Zhao, W. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Sci. Total Environ. 2017, 579, 1895–1906. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 75–108. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. China Forestry Statistical Yearbook; China Forestry Publishing House: Beijing, China, 2020. [Google Scholar]
- Global Fire Emissions Database (GFED). Global Fire Emissions Database, Version 4.1 (GFEDv4). NASA: 2018. Available online: http://www.globalfiredata.org/index.html (accessed on 24 February 2025).
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Gao, C.; Shi, C.; Li, J.; Li, J.; Zhang, X.; Huang, X.; Shi, F.; Yang, J.; Bai, Y.; Liu, X. Lightning-ignited wildfire prediction in the boreal forest of northeast China. Glob. Planet. Change 2025, 253, 104948. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, D.; Ai, S.; Wang, H.; Zuo, X. Research on the influencing factors and prevention measures of long term forest fire risk in Northeast China. Ecol. Indic. 2023, 147, 110965. [Google Scholar] [CrossRef]
- Chen, F.; Niu, S.; Tong, X.; Zhao, J.; Sun, Y.; He, T. The Impact of Precipitation Regimes on Forest Fires in Yunnan Province, Southwest China. Sci. World J. 2014, 2014, 326782. [Google Scholar] [CrossRef]
- Ye, T.; Wang, Y.; Guo, Z.; Li, Y. Factor Contribution to Fire Occurrence, Size, and Burn Probability in a Subtropical Coniferous Forest in East China. PLoS ONE 2017, 12, e0172110. [Google Scholar] [CrossRef]
- Niu, R.; Zhai, P. Study on Forest Fire Danger Over Northern China During the Recent 50 Years. Clim. Change 2012, 111, 723–736. [Google Scholar] [CrossRef]
- Humber, M.L.; Boschetti, L.; Giglio, L.; Justice, C.O. Spatial and Temporal Intercomparison of Four Global Burned Area Products. Int. J. Digit. Earth 2018, 12, 460–484. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS-Landsat Fusion for Large Area 30 m Burned Area Mapping. Remote Sens. Environ. 2015, 161, 27–42. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Giglio, L. Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. Int. J. Wildland Fire 2010, 19, 705–709. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and Regional Analysis of Climate and Human Drivers of Wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
Region Name | Abbreviation | Provinces/Autonomous Regions/Municipalities |
---|---|---|
Northeast China | NE | Heilongjiang, Jilin, Liaoning |
North China | NC | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia |
Northwest China | NW | Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang |
Southwest China | SW | Sichuan, Chongqing, Guizhou, Yunnan, Tibet |
East China | EC | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong |
Central South China | SC | Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan |
Aspect | GFED4 | GFED5 |
---|---|---|
Data source | MODIS MCD64A1 | MODIS MCD64A1 |
Temporal resolution | Monthly | Monthly |
Time span | 1997–2016 | 1997–2020 |
Spatial resolution | 0.25° | 0.25° |
Data format | HDF | NetCDF |
Data content | Monthly burned area | Monthly burned area |
Burned area detection algorithm | Based on NBR (Normalized Burn Ratio) | Corrected using high-resolution data |
Omission error correction | Correction factors by region, season, and vegetation type | Direct calibration with high-resolution reference data |
Commission error correction | Not explicitly corrected | Non-burned areas in MODIS adjusted using high-resolution data |
Cropland fire treatment | Simplified estimation method | New estimation method using high-resolution data |
Peatland and deforestation fires | Limited processing | Effectively addressed using high-resolution data |
Accuracy of burned area estimation | Conservative estimate; may underestimate small fires | Higher accuracy; better reflects contribution from small-scale fires |
Metrics | Formula | Optimal Value | |
---|---|---|---|
Correlation Coefficient (CC) | (1) | 1 | |
Root Mean Square Error (RMSE) | (2) | 0 | |
Mean Error (ME) | (3) | 0 |
Region | CC | RMSE (×104 ha) | ME (×104 ha) |
---|---|---|---|
China Mainland | 0.832 | 15.340 | 0.348 |
Northeast China | 0.790 | 12.975 | −0.947 |
North China | 0.943 | 2.432 | 0.947 |
East China | 0.695 | 1.323 | −0.485 |
Northwest China | 0.262 | 0.179 | 0.11 |
Southwest China | 0.488 | 2.861 | 0.445 |
South Central China | 0.782 | 1.224 | 0.279 |
Season | Region | CC | RMSE (×104 ha) | ME (×104 ha) |
---|---|---|---|---|
Spring | China Mainland | 0.888 | 12.392 | −0.870 |
Northeast China | 0.843 | 11.997 | −0.869 | |
North China | 0.949 | 2.388 | 0.949 | |
East China | 0.706 | 0.856 | −0.345 | |
Northwest China | 0.049 | 0.082 | −0.002 | |
Southwest China | 0.136 | 1.598 | −0.060 | |
South Central China | 0.749 | 0.850 | −0.544 | |
Summer | China Mainland | 0.757 | 0.802 | 0.102 |
Northeast China | 0.822 | 0.372 | 0.155 | |
North China | 0.643 | 0.911 | −0.211 | |
East China | 0.083 | 0.249 | 0.062 | |
Northwest China | −0.329 | 0.111 | 0.068 | |
Southwest China | 0.609 | 0.109 | −0.007 | |
South Central China | 0.734 | 0.121 | 0.034 | |
Autumn | China Mainland | 0.769 | 4.303 | 0.262 |
Northeast China | 0.702 | 4.306 | −0.278 | |
North China | 0.490 | 0.510 | 0.180 | |
East China | 0.755 | 0.217 | 0.034 | |
Northwest China | 0.311 | 0.136 | 0.054 | |
Southwest China | 0.076 | 0.045 | −0.002 | |
South Central China | 0.838 | 0.499 | 0.274 | |
Winter | China Mainland | 0.764 | 2.388 | 0.854 |
Northeast China | 0.074 | 0.083 | 0.044 | |
North China | 0.042 | 0.081 | 0.028 | |
East China | 0.809 | 0.588 | −0.237 | |
Northwest China | 0.141 | 0.017 | −0.010 | |
Southwest China | 0.854 | 1.624 | 0.514 | |
South Central China | 0.872 | 0.913 | 0.515 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Di, Z.; Zhang, S.; Meng, H.; Tian, X.; Xie, M. Applicability Assessment of GFED4 and GFED5 on Forest Fires in Chinese Mainland and Its Fire-Scale Patterns Change. Remote Sens. 2025, 17, 3461. https://doi.org/10.3390/rs17203461
Wang X, Di Z, Zhang S, Meng H, Tian X, Xie M. Applicability Assessment of GFED4 and GFED5 on Forest Fires in Chinese Mainland and Its Fire-Scale Patterns Change. Remote Sensing. 2025; 17(20):3461. https://doi.org/10.3390/rs17203461
Chicago/Turabian StyleWang, Xurui, Zhenhua Di, Shenglei Zhang, Hao Meng, Xinling Tian, and Meixia Xie. 2025. "Applicability Assessment of GFED4 and GFED5 on Forest Fires in Chinese Mainland and Its Fire-Scale Patterns Change" Remote Sensing 17, no. 20: 3461. https://doi.org/10.3390/rs17203461
APA StyleWang, X., Di, Z., Zhang, S., Meng, H., Tian, X., & Xie, M. (2025). Applicability Assessment of GFED4 and GFED5 on Forest Fires in Chinese Mainland and Its Fire-Scale Patterns Change. Remote Sensing, 17(20), 3461. https://doi.org/10.3390/rs17203461