Robust Satellite Techniques (RSTs) for SO2 Detection with MSG-SEVIRI Data: A Case Study of the 2021 Tajogaite Eruption
Abstract
Highlights
- This study evaluates a novel RST configuration tailored for volcanic SO2 detection using SEVIRI data.
- The proposed configuration detected SO2 on ~81% of eruption days, with high precision (~79%) and very low false positives (<2%)
- The RST method can provide a robust, near-real-time monitoring tool, complementing UV-based products that are more sensitive but with a lower temporal resolution.
- The approach demonstrates strong potential for operational use with MTG/FCI, contributing volcanic hazard monitoring in future eruptions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. MSG-SEVIRI
2.2.2. S5P Product Algorithm Laboratory (S5P-PAL)–L3 Grid Daily SO2CBR
2.3. Methodology
2.3.1. The RST-Based Approach for SO2 Plume Detection
2.3.2. Method Implementation
2.3.3. Validation Method
- True Positive (TP): The number of pixels where SO2 was correctly detected.
- False Positive (FP): The number of pixels where SO2 was incorrectly detected.
- True Negative (TN): The number of pixels correctly identified as not containing SO2.
- False Negative (FN): The number of pixels where SO2 was missed.
- Accuracy is the proportion of correctly classified pixels, both positive and negative, relative to all evaluated pixels.
- Precision, that is, the proportion of SO2 detections that are correct.
- Recall (or sensitivity), that is, the ability of the method to detect all actual SO2 pixels.
- F1-Score, representing the harmonic mean of precision and recall. It provides a single measure that balances both false positives and false negatives, which is especially useful when data are imbalanced.
- The false-positive rate (FP rate) is the proportion of actual negatives incorrectly predicted as positive.
- Micro average: This aggregates the total TP, FP, and FN across all detections and computes the metric globally.
- Macro average: Computes the metrics for each image individually and averages them equally.
- Weighted average: Computes the metrics per image but weights them according to the number of pixels in each sample.
3. Results
Comparison Between S5P-PAL SO2 and RST-SO2 Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oppenheimer, C.; Scaillet, B.; Martin, R.S. Sulfur Degassing from Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts. Rev. Mineral. Geochem. 2011, 73, 363–421. [Google Scholar] [CrossRef]
- Shinohara, H. Excess Degassing from Volcanoes and Its Role on Eruptive and Intrusive Activity. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Wilson, T.M.; Stewart, C.; Sword-Daniels, V.; Leonard, G.S.; Johnston, D.M.; Cole, J.W.; Wardman, J.; Wilson, G.; Barnard, S.T. Volcanic Ash Impacts on Critical Infrastructure. Phys. Chem. Earth Parts A/B/C 2012, 45–46, 5–23. [Google Scholar] [CrossRef]
- Craig, H.; Wilson, T.; Stewart, C.; Outes, V.; Villarosa, G.; Baxter, P. Impacts to Agriculture and Critical Infrastructure in Argentina after Ashfall from the 2011 Eruption of the Cordón Caulle Volcanic Complex: An Assessment of Published Damage and Function Thresholds. J. Appl. Volcanol. 2016, 5, 7. [Google Scholar] [CrossRef]
- Bourassa, A.; Robock, A.; Randel, W.J.; Deshler, T.; Rieger, L.; Lloyd, N.D.; Llewellyn, E.J.; Degenstein, D.A. Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport. Science 2012, 337, 78–81. [Google Scholar] [CrossRef]
- Heaviside, C.; Witham, C.S.; Vardoulakis, S. Potential health impacts from sulphur dioxide and sulphate exposure in the UK resulting from an Icelandic effusive volcanic eruption. Sci. Total Environ. 2021, 774, 145549. [Google Scholar] [CrossRef]
- Vita, F.; Schiavo, B.; Inguaggiato, C.; Cabassi, J.; Venturi, S.; Tassi, F.; Inguaggiato, S. Output of Volcanic SO2 Gases and Their Dispersion in the Atmosphere: The Case of Vulcano Island, Aeolian Archipelago, Italy. Atmosphere 2025, 16, 651. [Google Scholar] [CrossRef]
- Thomas, H.E.; Prata, A.J. Sulphur Dioxide as a Volcanic Ash Proxy during the April–May 2010 Eruption of Eyjafjallajökull Volcano, Iceland. Atmos. Chem. Phys. 2011, 11, 6871–6880. [Google Scholar] [CrossRef]
- Sears, T.M.; Thomas, G.E.; Carboni, E.; A. Smith, A.J.; Grainger, R.G. SO2 as a Possible Proxy for Volcanic Ash in Aviation Hazard Avoidance. J. Geophys. Res. Atmos. 2013, 118, 5698–5709. [Google Scholar] [CrossRef]
- Casadevall, T.J. The 1989–1990 Eruption of Redoubt Volcano, Alaska: Impacts on Aircraft Operations. J. Volcanol. Geotherm. Res. 1994, 62, 301–316. [Google Scholar] [CrossRef]
- Olmos, R.; Barrancos, J.; Rivera, C.; Barahona, F.; López, D.L.; Henriquez, B.; Hernández, A.; Benitez, E.; Hernández, P.A.; Pérez, N.M.; et al. Anomalous Emissions of SO2 during the Recent Eruption of Santa Ana Volcano, El Salvador, Central America. Pure Appl. Geophys. 2007, 164, 2489–2506. [Google Scholar] [CrossRef]
- Mota, R.; Pacheco, J.M.; Pimentel, A.; Gil, A. Monitoring Volcanic Plumes and Clouds Using Remote Sensing: A Systematic Review. Remote Sens. 2024, 16, 1789. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near Real-Time Monitoring of the Christmas 2018 Etna Eruption Using SEVIRI and Products Validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef]
- Gauthier, P.-J.; Sigmarsson, O.; Gouhier, M.; Haddadi, B.; Moune, S. Elevated Gas Flux and Trace Metal Degassing from the 2014–2015 Fissure Eruption at the Bárðarbunga Volcanic System, Iceland. J. Geophys. Res. Solid Earth 2016, 121, 1610–1630. [Google Scholar] [CrossRef]
- de Laat, A.; Vazquez-Navarro, M.; Theys, N.; Stammes, P. Analysis of Properties of the 19 February 2018 Volcanic Eruption of Mount Sinabung in S5P/TROPOMI and Himawari-8 Satellite Data. Nat. Hazards Earth Syst. Sci. 2020, 20, 1203–1217. [Google Scholar] [CrossRef]
- Prata, A.T.; Mingari, L.; Folch, A.; Macedonio, G.; Costa, A. FALL3D-8.0: A Computational Model for Atmospheric Transport and Deposition of Particles, Aerosols and Radionuclides—Part 2: Model Validation. Geosci. Model Dev. 2021, 14, 409–436. [Google Scholar] [CrossRef]
- Pugnaghi, S.; Gangale, G.; Corradini, S.; Buongiorno, M.F. Mt. Etna Sulfur Dioxide Flux Monitoring Using ASTER-TIR Data and Atmospheric Observations. J. Volcanol. Geotherm. Res. 2006, 152, 74–90. [Google Scholar] [CrossRef]
- Corradini, S.; Merucci, L.; Prata, A.J.; Piscini, A. Volcanic Ash and SO2 in the 2008 Kasatochi Eruption: Retrievals Comparison from Different IR Satellite Sensors. J. Geophys. Res. 2010, 115, D00L21. [Google Scholar] [CrossRef]
- Realmuto, V.J.; Berk, A. Plume Tracker: Interactive Mapping of Volcanic Sulfur Dioxide Emissions with High-Performance Radiative Transfer Modeling. J. Volcanol. Geotherm. Res. 2016, 327, 55–69. [Google Scholar] [CrossRef]
- Kylling, A. Ash and Ice Clouds during the Mt Kelud February 2014 Eruption as Interpreted from IASI and AVHRR/3 Observations. Atmos. Meas. Tech. 2016, 9, 2103–2117. [Google Scholar] [CrossRef]
- Carn, S.A. Quantifying Tropospheric Volcanic Emissions with AIRS: The 2002 Eruption of Mt. Etna (Italy). Geophys. Res. Lett. 2005, 32, L02301. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Brenot, H.; Clarisse, L.; Merucci, L.; Pardini, F.; Prata, A.J.; Realmuto, V.J.; Stelitano, D.; Theys, N. Tropospheric Volcanic SO2 Mass and Flux Retrievals from Satellite. The Etna December 2018 Eruption. Remote Sens. 2021, 13, 2225. [Google Scholar] [CrossRef]
- Carn, S.A.; Krueger, A.J.; Bluth, G.J.S.; Schaefer, S.J.; Krotkov, N.A.; Watson, I.M.; Datta, S. Volcanic Eruption Detection by the Total Ozone Mapping Spectrometer (TOMS) Instruments: A 22-Year Record of Sulphur Dioxide and Ash Emissions. Geol. Soc. 2003, 213, 177–202. [Google Scholar] [CrossRef]
- Elissavet, M.; Clarisse, L.; Carboni, N.E.; Gent, V.; Spinetti, N.C.; Balis, N.D.; Dimopoulos, N.S.; Grainger, N.D.; Theys, N.N.; Tampellini, L.; et al. Intercomparison of Metop-A SO2 Measurements during the 2010- 2011 Icelandic Eruptions. Ann. Geophys. 2015, 57. [Google Scholar] [CrossRef]
- Flemming, J.; Inness, A. Volcanic Sulfur Dioxide Plume Forecasts Based on UV Satellite Retrievals for the 2011 Grímsvötn and the 2010 Eyjafjallajökull Eruption. J. Geophys. Res. Atmos. 2013, 118, 10,172–10,189. [Google Scholar] [CrossRef]
- Fedkin, N.M.; Li, C.; Krotkov, N.A.; Hedelt, P.; Loyola, D.G.; Dickerson, R.R.; Spurr, R. Volcanic SO2 Effective Layer Height Retrieval for the Ozone Monitoring Instrument (OMI) Using a Machine-Learning Approach. Atmos. Meas. Tech. 2021, 14, 3673–3691. [Google Scholar] [CrossRef]
- Grandin, R.; Boichu, M.; Mathurin, T.; Pascal, N. Automatic Estimation of Daily Volcanic Sulfur Dioxide Gas Flux from TROPOMI Satellite Observations: Application to Etna and Piton de La Fournaise. J. Geophys. Res. Solid Earth 2024, 129, e2024JB029309. [Google Scholar] [CrossRef]
- Dozzo, M.; Aiuppa, A.; Bilotta, G.; Cappello, A.; Ganci, G. A New Algorithm for the Global-Scale Quantification of Volcanic SO2 Exploiting the Sentinel-5P TROPOMI and Google Earth Engine. Remote Sens. 2025, 17, 534. [Google Scholar] [CrossRef]
- Prata, A.J.; Kerkmann, J. Simultaneous Retrieval of Volcanic Ash and SO2 using MSG-SEVIRI Measurements. Geophys. Res. Lett. 2007, 34, L05813. [Google Scholar] [CrossRef]
- Corradini, S.; Merucci, L.; Prata, A.J. Retrieval of SO2 from Thermal Infrared Satellite Measurements: Correction Procedures for the Effects of Volcanic Ash. Atmos. Meas. Tech. 2009, 2, 177–191. [Google Scholar] [CrossRef]
- Prata, A.J.; Bernardo, C. Retrieval of Volcanic SO2 column Abundance from Atmospheric Infrared Sounder Data. J. Geophys. Res. 2007, 112, D20204. [Google Scholar] [CrossRef]
- EUMETSAT—SEVIRI Ash RGB Product Quick Guide. 2024. Available online: https://user.eumetsat.int/resources/user-guides/ash-rgb-quick-guide (accessed on 10 April 2024).
- Torrisi, F.; Amato, E.; Corradino, C.; Mangiagli, S.; Del Negro, C. Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images. Sensors 2022, 22, 7712. [Google Scholar] [CrossRef]
- Torrisi, F.; Corradino, C.; Cariello, S.; Del Negro, C. Enhancing detection of volcanic ash clouds from space with convolutional neural networks. J. Volcanol. Geotherm. Res. 2024, 448, 108046. [Google Scholar] [CrossRef]
- Naranjo, C.; Corradini, S.; Guerrieri, L.; Stelitano, D.; Merucci, L.; Picchiani, M. Leveraging Machine Learning techniques and SEVIRI data to detect volcanic clouds composed of ash, ice, and SO2 during the 2020–2022 Etna eruption activity. In Proceedings of the EGU General Assembly EGU25-10309, Vienna, Austria, 27 April–2 May 2025. [Google Scholar] [CrossRef]
- Marchese, F.; Falconieri, A.; Filizzola, C.; Pergola, N.; Tramutoli, V. Investigating Volcanic Plumes from Mt. Etna Eruptions of December 2015 by Means of AVHRR and SEVIRI Data. Sensors 2019, 19, 1174. [Google Scholar] [CrossRef] [PubMed]
- Theys, N.; Fioletov, V.; Li, C.; De Smedt, I.; Lerot, C.; McLinden, C.A.; Krotkov, N.A.; Griffin, D.C.; Clarisse, L.; Hedelt, P.; et al. A Sulfur Dioxide Covariance-Based Retrieval Algorithm (COBRA): Application to TROPOMI Reveals New Emission Sources. Atmos. Chem. Phys. 2021, 21, 16727–16744. [Google Scholar] [CrossRef]
- Barker, A.K.; Troll, V.R.; Carracedo, J.C.; Nicholls, P.A. The Magma Plumbing System for the 1971 Teneguía Eruption on La Palma, Canary Islands. Contrib. Mineral. Petrol. 2015, 170, 54. [Google Scholar] [CrossRef]
- Carracedo, J.C.; Badiola, E.R.; Guillou, H.; de la Nuez, J.; Torrado, F.J.P. Geology and Volcanology of La Palma and El Hierro, Western Canaries. Estud. Geol.—Madr. 2021, 57, 175–273. Available online: https://hal.science/hal-03323419 (accessed on 6 May 2025). [CrossRef]
- Carracedo, J.C.; Troll, V.R.; Day, J.M.D.; Geiger, H.; Aulinas, M.; Soler, V.; Deegan, F.M.; Perez-Torrado, F.J.; Gisbert, G.; Gazel, E.; et al. The 2021 Eruption of the Cumbre Vieja Volcanic Ridge on La Palma, Canary Islands. Geol. Today 2022, 38, 94–107. [Google Scholar] [CrossRef]
- De Luca, C.; Valerio, E.; Giudicepietro, F.; Macedonio, G.; Casu, F.; Lanari, R. Pre- and Co-Eruptive Analysis of the September 2021 Eruption at Cumbre Vieja Volcano (La Palma, Canary Islands) through DInSAR Measurements and Analytical Modeling. Geophys. Res. Lett. 2022, 49, e2021GL097293. [Google Scholar] [CrossRef]
- Bonadonna, C.; Pistolesi, M.; Biass, S.; Voloschina, M.; Romero, J.; Coppola, D.; Folch, A.; D’Auria, L.; Martin-Lorenzo, A.; Dominguez, L.; et al. Physical Characterization of Long-Lasting Hybrid Eruptions: The 2021 Tajogaite Eruption of Cumbre Vieja (La Palma, Canary Islands). J. Geophys. Res. Solid Earth 2022, 127, e2022JB025302. [Google Scholar] [CrossRef]
- Plan de Emergencias Volcánicas de Canarias. Available online: https://www.gobiernodecanarias.org/infovolcanlapalma/pevolca/ (accessed on 14 April 2024).
- Esse, B.; Burton, M.; Hayer, C.; La Spina, G.; Pardo Cofrades, A.; Asensio-Ramos, M.; Barrancos, J.; Pérez, N. Forecasting the Evolution of the 2021 Tajogaite Eruption, La Palma, with TROPOMI/PlumeTraj-Derived SO2 Emission Rates. Bull. Volcanol. 2025, 87, 20. [Google Scholar] [CrossRef]
- EUMETSAT—MSG Services. 2024. Available online: https://www.eumetsat.int/msg-services (accessed on 15 May 2024).
- Veefkind, J.; Claas, J.; Van Weele, M.; Aben, I.; Visser, H.; Kleipool, Q.; De Vries, J.; Vink, R.; Haan, J.; Förster, H.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- S5P-PAL Data Portal. Available online: https://data-portal.s5p-pal.com/products/so2cbr.html (accessed on 15 May 2024).
- Tramutoli, V. Robust AVHRR Techniques (RAT) for Environmental Monitoring: Theory and Applications. Proc. SPIE 1998, 110. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications. In Proceedings of the International Workshop on Analysis of Multi-temporal Remote Sensing Images. In Proceedings of the 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Pergola, N.; Coviello, I.; Filizzola, C.; Lacava, T.; Marchese, F.; Paciello, R.; Tramutoli, V. A Review of RSTVOLC, an Original Algorithm for Automatic Detection and Near-Real-Time Monitoring of Volcanic Hotspots from Space. Geol. Soc. 2015, 426, 55–72. [Google Scholar] [CrossRef]
- Pergola, N.; Tramutoli, V.; Marchese, F.; Scaffidi, I.; Lacava, T. Improving Volcanic Ash Cloud Detection by a Robust Satellite Technique. Remote Sens. Environ. 2004, 90, 1–22. [Google Scholar] [CrossRef]
- Marchese, F.; Filizzola, C.; Mazzeo, G.; Pergola, N.; Sannazzaro, F.; Tramutoli, V. Assessment and Validation in Time Domain of a Robust Satellite Technique (RSTASH) for Ash Cloud Detection. Geomat. Nat. Hazards Risk 2011, 2, 247–262. [Google Scholar] [CrossRef]
- Piscini, A.; Corradini, S.; Marchese, F.; Merucci, L.; Pergola, N.; Tramutoli, V. Volcanic Ash Cloud Detection from Space: A Comparison between the RSTASH Technique and the Water Vapour Corrected BTD Procedure. Geomat. Nat. Hazards Risk 2011, 2, 263–277. [Google Scholar] [CrossRef]
- Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V. Monitoring the Agung (Indonesia) Ash Plume of November 2017 by Means of Infrared Himawari 8 Data. Remote Sens. 2018, 10, 919. [Google Scholar] [CrossRef]
- Falconieri, A.; Cooke, M.; Filizzola, C.; Marchese, F.; Pergola, N.; Tramutoli, V. Comparing Two Independent Satellite-Based Algorithms for Detecting and Tracking Ash Clouds by Using SEVIRI Sensor. Sensors 2018, 18, 369. [Google Scholar] [CrossRef]
- Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V. A Retrospective Analysis of the Shinmoedake (Japan) Eruption of 26–27 January 2011 by Means of Japanese Geostationary Satellite Data. J. Volcanol. Geotherm. Res. 2014, 269, 1–13. [Google Scholar] [CrossRef]
- Marchese, F.; Ciampa, M.; Filizzola, C.; Lacava, T.; Mazzeo, G.; Pergola, N.; Tramutoli, V. On the Exportability of Robust Satellite Techniques (RST) for Active Volcano Monitoring. Remote Sens. 2010, 2, 1575–1588. [Google Scholar] [CrossRef]
- Falconieri, A.; Papagiannopoulos, N.; Marchese, F.; Filizzola, C.; Trippetta, S.; Pergola, N.; Pappalardo, G.; Tramutoli, V.; Mona, L. Validation of Ash/Dust Detections from SEVIRI Data Using ACTRIS/EARLINET Ground-Based LIDAR Measurements. Remote Sens. 2020, 12, 1172. [Google Scholar] [CrossRef]
- Prata, A.J. Infrared Radiative Transfer Calculations for Volcanic Ash Clouds. Geophys. Res. Lett. 1989, 16, 1293–1296. [Google Scholar] [CrossRef]
- Ellrod, G.P. Improved Detection of Airborne Volcanic Ash Using Multispectral Infrared Satellite Data. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Koeppen, W.C.; Pilger, E.; Wright, R. Time Series Analysis of Infrared Satellite Data for Detecting Thermal Anomalies: A Hybrid Approach. Bull. Volcanol. 2010, 73, 577–593. [Google Scholar] [CrossRef]
- Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V. A Self-Sufficient Approach for GERB Cloudy Radiance Detection. Atmos. Res. 2004, 72, 39–56. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar] [CrossRef]
- Milford, C.; Torres, C.; Vilches, J.; Gossman, A.-K.; Weis, F.; Suárez-Molina, D.; García, O.E.; Prats, N.; Barreto, Á.; García, R.D.; et al. Impact of the 2021 La Palma Volcanic Eruption on Air Quality: Insights from a Multidisciplinary Approach. Sci. Total Environ. 2023, 869, 161652. [Google Scholar] [CrossRef]
- SACS—Support to Aviation Control Service. Available online: http://sacs.aeronomie.be/ (accessed on 10 April 2024).
- Kearney, C.S.; Watson, I.M. Correcting Satellite-Based Infrared Sulfur Dioxide Retrievals for the Presence of Silicate Ash. J. Geophys. Res. Atmos. 2009, 114, D22208. [Google Scholar] [CrossRef]
- Theys, N.; Hedelt, P.; De Smedt, I.; Lerot, C.; Yu, H.; Vlietinck, J.; Pedergnana, M.; Arellano, S.; Galle, B.; Fernandez, D.; et al. Global Monitoring of Volcanic SO2 Degassing with Unprecedented Resolution from TROPOMI Onboard Sentinel-5 Precursor. Sci. Rep. 2019, 9, 2643. [Google Scholar] [CrossRef]
- De Santis, D.; Petracca, I.; Corradini, S.; Guerrieri, L.; Picchiani, M.; Merucci, L.; Stelitano, D.; Del Frate, F.; Prata, F.; Schiavon, G. Volcanic SO2 near-real time retrieval using TROPOMI data and neural networks: The December 2018 Etna test case. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8480–8483. [Google Scholar]
- Corradino, C.; Jouve, P.; La Spina, A.; Del Negro, C. Monitoring Earth’s atmosphere with Sentinel-5 TROPOMI and Artificial Intelligence: Quantifying volcanic SO2 emissions. Remote Sens. Environ. 2024, 315, 114463. [Google Scholar] [CrossRef]
- VAAC—Volcanic Ash Advisory Center of Tolouse. Available online: https://vaac.meteo.fr/volcanoes/la-palma/page/19/ (accessed on 14 May 2024).
- Filizzola, C.; Mazzeo, G.; Marchese, F.; Pietrapertosa, C.; Pergola, N. The Contribution of Meteosat Third Generation–Flexible Combined Imager (MTG-FCI) Observations to the Monitoring of Thermal Volcanic Activity: The Mount Etna (Italy) February–March 2025 Eruption. Remote Sens. 2025, 17, 2102. [Google Scholar] [CrossRef]










| Date | RST High Confidence | RST Low Confidence | Ash RGB | SO2 Emission (kt/day) |
|---|---|---|---|---|
| 22/09/2021 | - | X | X | ~60 |
| 27/09/2021 | - | - | - | ~9 |
| 08/10/2021 | - | - | - | ~38 |
| 14/10/2021 | - | - | X | ~10 |
| 19/10/2021 | - | - | - | ~17 |
| 22/10/2021 | - | - | X | ~28 |
| 23/10/2021 | - | - | - | ~9 |
| 27/10/2021 | - | - | - | ~13 |
| 28/10/2021 | - | X | X | ~15 |
| 31/10/2021 | - | - | X | ~15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, R.; Filizzola, C.; Falconieri, A.; Marchese, F.; Pergola, N.; Tramutoli, V.; Gil, A.; Pacheco, J. Robust Satellite Techniques (RSTs) for SO2 Detection with MSG-SEVIRI Data: A Case Study of the 2021 Tajogaite Eruption. Remote Sens. 2025, 17, 3345. https://doi.org/10.3390/rs17193345
Mota R, Filizzola C, Falconieri A, Marchese F, Pergola N, Tramutoli V, Gil A, Pacheco J. Robust Satellite Techniques (RSTs) for SO2 Detection with MSG-SEVIRI Data: A Case Study of the 2021 Tajogaite Eruption. Remote Sensing. 2025; 17(19):3345. https://doi.org/10.3390/rs17193345
Chicago/Turabian StyleMota, Rui, Carolina Filizzola, Alfredo Falconieri, Francesco Marchese, Nicola Pergola, Valerio Tramutoli, Artur Gil, and José Pacheco. 2025. "Robust Satellite Techniques (RSTs) for SO2 Detection with MSG-SEVIRI Data: A Case Study of the 2021 Tajogaite Eruption" Remote Sensing 17, no. 19: 3345. https://doi.org/10.3390/rs17193345
APA StyleMota, R., Filizzola, C., Falconieri, A., Marchese, F., Pergola, N., Tramutoli, V., Gil, A., & Pacheco, J. (2025). Robust Satellite Techniques (RSTs) for SO2 Detection with MSG-SEVIRI Data: A Case Study of the 2021 Tajogaite Eruption. Remote Sensing, 17(19), 3345. https://doi.org/10.3390/rs17193345

