Integrating Elevation Frequency Histogram and Multi-Feature Gaussian Mixture Model for Ground Filtering of UAV LiDAR Point Clouds in Densely Vegetated Areas
Abstract
Highlights
- Cubic-spline fitting combined with an elevation frequency histogram enables coarse extraction of UAV LiDAR ground points in densely vegetated areas.
- A multi-feature GMM with the elevation residual, GLI, and intensity effectively distinguishes low vegetation that is adjacent to the ground surface.
- A two-stage ground filtering method shows significant potential for applications in densely vegetated areas, especially areas covered with low-growing vegetation.
Abstract
1. Introduction
- (i)
- Applying cubic spline fitting to the elevation frequency histogram to construct a smoother pseudo-waveform of UAV LiDAR data, enabling more reliable separation of ground and non-ground points and providing robust support for subsequent modeling.
- (ii)
- Integrating geometric, intensity, and spectral features of point clouds into the GMM filtering process effectively exploits the differences among targets and significantly improves ground point extraction accuracy in complex areas where low vegetation is adjacent to ground surfaces.
2. Methodology
2.1. Preprocessing of LiDAR Point Cloud
2.2. Ground Point Coarse Extraction Based on Frequency Histogram
2.3. Extraction of Elevation Residual Feature Using PCA
2.4. Separation of Ground and Non-Ground Points with Multi-Feature GMM
2.5. Ground Point Optimization Based on Mahalanobis Distance
3. Experiment and Results
3.1. Study Aea
3.2. Comparative Experiment Parameter Settings
3.3. Accuracy Assessment
3.4. Qualitative Results
3.5. Quantitative Results
4. Discussion
4.1. Parameter Sensitivity Analysis with Different Terrains
4.2. Comparative Analysis of Single-Feature and Multi-Feature GMM
4.3. Feature Ablation Experiments
4.4. Analysis of Runtime and Algorithmic Efficiency
5. Conclusions
- (1)
- The proposed method achieves 94.14% , 88.45% , 88.35% , and 93.85% F1-score across the three representative study areas. Compared with CSF, SBF, and PMF, and are increased by 2.73–5.35% and 3.03–3.48%, respectively, while and F1-score are improved by 1.73–2.38% and 1.60–3.16%. The experimental results demonstrate that the proposed method performs well in complex environments, especially in areas densely covered by low vegetation.
- (2)
- The multi-feature GMM shows higher classification accuracy and stronger robustness across different types of vegetation cover. Among the three features that are fed into the GMM, the elevation residual, as a geometric feature, demonstrates the greatest stability and discriminative ability in areas where ground boundaries are blurred due to dense vegetation cover.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, B.; Devereux, B. State-of-the-art: DTM generation using airborne LIDAR data. Sensors 2017, 17, 150. [Google Scholar] [CrossRef]
- Hui, Z.; Jin, S.; Xia, Y.; Nie, Y.; Xie, X.; Li, N. A mean shift segmentation morphological filter for airborne LiDAR DTM extraction under forest canopy. Opt. Laser Technol. 2021, 136, 106728–106743. [Google Scholar] [CrossRef]
- Bigdeli, B.; Amirkolaee, H.A.; Pahlavani, P. DTM extraction under forest canopy using LiDAR data and a modified invasive weed optimization algorithm. Remote Sens. Environ. 2018, 216, 289–300. [Google Scholar] [CrossRef]
- Hui, Z.; Cheng, P.; Ziggah, Y.; Nie, Y. A threshold-free filtering algorithm for Airborne LiDAR point clouds based on expectation-maximization. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 607–610. [Google Scholar] [CrossRef]
- Chen, C.; Guo, J.; Wu, H.; Li, Y.; Shi, B. Performance comparison of filtering algorithms for high-density airborne LiDAR point clouds over complex LandScapes. Remote Sens. 2021, 13, 2663. [Google Scholar] [CrossRef]
- Chen, C.; Xu, L.; Hao, J.; Li, Y.; Chen, D. Efficient interpolation-based and terrain-adaptive hierarchical filter for ultra-large-scale point cloud over complex landscapes. Opt. Laser Technol. 2025, 187, 112860–112875. [Google Scholar] [CrossRef]
- Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2004, 59, 85–101. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Serifoglu, C.; Gungor, O.; Yilmaz, V. Performance evaluation of different ground filtering algorithms for uav-based point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 245–251. [Google Scholar] [CrossRef]
- Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sens. 2010, 2, 833–860. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.; Li, W.; Hu, T.; Liu, J.; Guo, Q. A comparison of LiDAR filtering algorithms in vegetated mountain areas. Can. J. Remote Sens. 2018, 44, 287–298. [Google Scholar] [CrossRef]
- Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 935–942. [Google Scholar]
- Susaki, J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation. Remote Sens. 2012, 4, 1804–1819. [Google Scholar] [CrossRef]
- Kang, C.; Lin, Z.; Wu, S.; Lan, Y.; Geng, C.; Zhang, S. A triangular grid filter method based on the slope filter. Remote Sens. 2023, 15, 2930. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Liu, L.; Lim, S. A voxel-based multiscale morphological airborne lidar filtering algorithm for digital elevation models for forest regions. Measurement 2018, 123, 135–144. [Google Scholar] [CrossRef]
- Meng, X.; Lin, Y.; Yan, L.; Gao, X.; Yao, Y.; Wang, C.; Luo, S. Airborne LiDAR point cloud filtering by a multilevel adaptive filter based on morphological reconstruction and thin plate spline interpolation. Electronics 2019, 8, 1153. [Google Scholar] [CrossRef]
- Chen, C.; Chang, B.; Li, Y.; Shi, B. Filtering airborne LiDAR point clouds based on a scale-irrelevant and terrain-adaptive approach. Measurement 2021, 171, 108756. [Google Scholar] [CrossRef]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Evans, J.S.; Hudak, A.T. A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS J. Photogramm. Remote Sens. 2013, 81, 44–59. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Chen, C.; Guo, J.; Li, Y.; Xu, L. Segmentation-based hierarchical interpolation filter using both geometric and radiometric features for LiDAR point clouds over complex scenarios. Measurement 2023, 211, 112668. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Yan, C.; Dai, H.; Liu, G.; Guo, J. An improved multi-resolution hierarchical classification method based on robust segmentation for filtering ALS point clouds. Int. J. Remote Sens. 2016, 37, 950–968. [Google Scholar] [CrossRef]
- Yang, B.; Huang, R.; Dong, Z.; Zang, Y.; Li, J. Two-step adaptive extraction method for ground points and breaklines from lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2016, 119, 373–389. [Google Scholar] [CrossRef]
- Fan, W.; Liu, X.; Zhang, Y.; Yue, D.; Wang, S.; Zhong, J. Airborne LiDAR Point Cloud Filtering Algorithm Based on Supervoxel Ground Saliency. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 10, 73–79. [Google Scholar] [CrossRef]
- Ayazi, S.M.; Saadat Seresht, M. Comparison of traditional and machine learning base methods for ground point cloud labeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 141–145. [Google Scholar] [CrossRef]
- Bailey, G.; Li, Y.; McKinney, N.; Yoder, D.; Wright, W.; Herrero, H. Comparison of ground point filtering algorithms for high-density point clouds collected by terrestrial LiDAR. Remote Sens. 2022, 14, 4776. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep learning for lidar point clouds in autonomous driving: A review. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3412–3432. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Song, D. A filtering method for LiDAR point cloud based on multi-scale CNN with attention mechanism. Remote Sens. 2022, 14, 6170. [Google Scholar] [CrossRef]
- Rizaldy, A.; Persello, C.; Gevaert, C.; Oude Elberink, S.; Vosselman, G. Ground and multi-class classification of airborne laser scanner point clouds using fully convolutional networks. Remote Sens. 2018, 10, 1723. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Dai, H.; Qu, S. DEM extraction from ALS point clouds in forest areas via graph convolution network. Remote Sens. 2020, 12, 178. [Google Scholar] [CrossRef]
- Chen, R.; Wu, J.; Zhao, X.; Luo, Y.; Xu, G. SC-CNN: LiDAR point cloud filtering CNN under slope and copula correlation constraint. ISPRS J. Photogramm. Remote Sens. 2024, 212, 381–395. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, C.; Li, H. Low-complexity adaptive radius outlier removal filter based on PCA for lidar point cloud denoising. Appl. Opt. 2021, 60, E1–E7. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiao, X.; Zhong, S.; Wang, W.; Li, Y.; Zhang, L.; Xie, Z. A feature-preserving framework for point cloud denoising. Comput. Aided Des. 2020, 127, 102857. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A.; Habib, A.; Kersting, A.P. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS J. Photogramm. Remote Sens. 2012, 67, 35–44. [Google Scholar] [CrossRef]
- Simoniello, T.; Coluzzi, R.; Guariglia, A.; Imbrenda, V.; Lanfredi, M.; Samela, C. Automatic filtering and classification of low-density airborne laser scanner clouds in shrubland environments. Remote Sens. 2022, 14, 5127. [Google Scholar] [CrossRef]
- Coren, F.; Sterzai, P. Radiometric correction in laser scanning. Int. J. Remote Sens. 2006, 27, 3097–3104. [Google Scholar] [CrossRef]
- Jutzi, B.; Gross, H. Investigations on surface reflection models for intensity normalization in airborne laser scanning (ALS) data. Photogramm. Eng. Remote Sens. 2010, 76, 1051–1060. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, J.; Azam, B.; Zhang, W.; Lin, M.; Li, C.; Jing, W.; Akhtar, N. RSVMamba for Tree Species Classification Using UAV RGB Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5607716. [Google Scholar] [CrossRef]
- Eng, L.S.; Ismail, R.; Hashim, W.; Baharum, A. The use of VARI, GLI, and VIgreen formulas in detecting vegetation in aerial images. Int. J. Technol. 2019, 10, 1385–1394. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Suk, T. Filtering green vegetation out from colored point clouds of Rocky terrains based on various vegetation indices: Comparison of simple statistical methods, support vector machine, and neural network. Remote Sens. 2023, 15, 3254. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Hu, Z. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data. Remote Sens. 2018, 10, 1962–1984. [Google Scholar] [CrossRef]
- Buján, S.; Cordero, M.; Miranda, D. Hybrid overlap filter for LiDAR point clouds using free software. Remote Sens. 2020, 12, 1051. [Google Scholar] [CrossRef]
- Chen, N.; Wang, N.; He, Y.; Ding, X.; Kong, J. An improved progressive triangular irregular network densification filtering algorithm for airborne LiDAR data. Front. Earth Sci. 2023, 10, 1015153. [Google Scholar] [CrossRef]
- Wolberg, G.; Alfy, I. An energy-minimization framework for monotonic cubic spline interpolation. J. Comput. Appl. Math. 2002, 143, 145–188. [Google Scholar] [CrossRef]
- Lim, H.; Hwang, S.; Myung, H. ERASOR: Egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building. IEEE Robot. Autom. Lett. 2021, 6, 2272–2279. [Google Scholar] [CrossRef]
- Lim, H.; Oh, M.; Myung, H. Patchwork: Concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D LiDAR sensor. IEEE Robot. Autom. Lett. 2021, 6, 6458–6465. [Google Scholar] [CrossRef]
- Gomes, T.; Matias, D.; Campos, A.; Cunha, L.; Roriz, R. A survey on ground segmentation methods for automotive LiDAR sensors. Sensors 2023, 23, 601. [Google Scholar] [CrossRef]
- Nurunnabi, A.; Belton, D.; West, G. Diagnostic-robust statistical analysis for local surface fitting in 3D point cloud data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 269–274. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Chassagnol, B.; Bichat, A.; Boudjeniba, C.; Wuillemin, P.-H.; Guedj, M.; Gohel, D.; Nuel, G.; Becht, E. Gaussian Mixture Models in R. R J. 2023, 15, 56–76. [Google Scholar] [CrossRef]
- Ng, H.T.; Ibrahim, H.; Rajendran, P. Statistical-based methods to improve precision of DBSCAN clustering algorithm for obstacle detection application in autonomous vehicles. Multimed. Tools Appl. 2025. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A. Evaluation of LiDAR-derived features relevance and training data minimization for 3D point cloud classification. Remote Sens. 2022, 14, 5934. [Google Scholar] [CrossRef]
- Özdemir, E.; Remondino, F.; Golkar, A. An efficient and general framework for aerial point cloud classification in urban scenarios. Remote Sens. 2021, 13, 1985. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, K.; Xiao, W.; Sheng, Y.; Su, D.; Wang, P.; Zhang, S.; Zhao, N.; Chen, H. Gaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne lidar point clouds. Photogramm. Eng. Remote Sens. 2021, 87, 615–630. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. E J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, S.; Nie, S.; Xi, X.; Xia, S.; Zhu, F.; Wang, C.; Zhu, X. A Novel Multi-Dimensional Statistics Denoising Algorithm Based on Gaussian Mixture Model for Photon-counting LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13308–13323. [Google Scholar] [CrossRef]
- Qin, N.; Tan, W.; Ma, L.; Zhang, D.; Guan, H.; Li, J. Deep learning for filtering the ground from ALS point clouds: A dataset, evaluations and issues. ISPRS J. Photogramm. Remote Sens. 2023, 202, 246–261. [Google Scholar] [CrossRef]
UAV (CHCNAV-BB4 Pro) | Parameters |
---|---|
Laser Scanning Instruments | CHCNAV AU20 |
Spot Frequency | 2000 kpt/s |
Range Accuracy | ±1.5 cm |
Scanning Speed | 10–200 lines/s |
Measurement Distance | 1.5–1500 m |
Laser Field of View | 360° |
Return Signal (maximum) | 16 |
Laser wavelength | 1550 nm |
Area | Point Density (pts/m2) | Ground Points | Other Points | Mean Slope (°) | Landscape Feature |
---|---|---|---|---|---|
Plot 1 | 1223.4 | 1,533,171 | 3,411,191 | 14.11 | tall trees, low shrubs |
Plot 2 | 524.41 | 1,065,647 | 1,673,719 | 9.96 | dense crops, terraces |
Plot 3 | 908.98 | 6,325,120 | 4,620,872 | 20.27 | dense low shrubs, mixed vegetation |
Method | Parameters | Plot1 | Plot2 | Plot3 |
---|---|---|---|---|
CSF | 0.25 | 0.25 | 0.25 | |
500 | 500 | 500 | ||
0.25 | 0.2 | 0.2 | ||
SBF | 1 | 1 | 1 | |
1.5 | 1 | 1 | ||
ω | 3 | 3 | 3 | |
PMF | 0.5 | 0.5 | 1 | |
10 | 10 | 20 | ||
1 | 1 | 1 | ||
10 | 8 | 20 | ||
0.7 | 0.5 | 0.5 | ||
RandLA-Net | 0.01 | |||
0.95 | ||||
E | 100 | |||
B | 4 | |||
Proposed | 5 × 5 | 2.5 × 2.5 | 4 × 4 | |
0.5 | 0.5 | 0.4 | ||
5 × 5 | 2 × 2 | 5 × 5 |
Accuracy | Method | Plot1 | Plot2 | Plot3 | Average |
---|---|---|---|---|---|
Proposed | 97.25 * | 95.50 ** | 89.67 ** | 94.14 ** | |
CSF | 95.10 | 93.30 | 86.89 | 91.76 | |
SBF | 96.62 | 90.72 | 87.99 | 91.78 | |
PMF | 97.33 ** | 92.66 | 87.24 | 92.41 | |
RandLA-Net | 96.45 | 93.90 * | 89.60 * | 93.32 * | |
IoUg | Proposed | 91.60 * | 89.16 ** | 84.60 ** | 88.45 ** |
CSF | 85.06 | 84.21 * | 80.31 | 83.19 | |
SBF | 89.73 | 78.14 | 81.43 | 83.10 | |
PMF | 91.78 ** | 83.74 | 81.63 * | 85.72 * | |
RandLA-Net | 89.35 | 84.16 | 80.98 | 84.83 | |
Proposed | 96.08 * | 92.86 ** | 76.11 * | 88.35 * | |
CSF | 93.21 | 89.58 | 71.82 | 84.87 | |
SBF | 95.21 | 86.11 | 74.63 | 85.32 | |
PMF | 96.19 ** | 88.19 | 70.53 | 84.97 | |
RandLA-Net | 94.93 | 90.97 * | 81.34 ** | 89.08 ** | |
Proposed | 95.62 * | 94.27 ** | 91.66 ** | 93.85 ** | |
CSF | 91.93 | 91.43 * | 89.08 | 90.81 | |
SBF | 94.59 | 87.73 | 89.76 | 90.69 | |
PMF | 95.72 ** | 91.15 | 89.89 * | 92.25 * | |
RandLA-Net | 94.38 | 91.40 | 89.49 | 91.76 |
Feature | Plot 1 | Plot 2 | Plot 3 | Average |
---|---|---|---|---|
Intensity | 78.89 | 76.40 | 70.40 | 75.23 |
GLI | 95.22 | 88.60 | 83.20 | 89.01 |
Elevation residual | 94.95 | 93.30 | 91.70 | 93.32 |
Multi-Feature | 95.71 | 94.30 | 91.70 | 93.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, H.; Feng, B.; Wang, C.; Lei, X.; Chang, J. Integrating Elevation Frequency Histogram and Multi-Feature Gaussian Mixture Model for Ground Filtering of UAV LiDAR Point Clouds in Densely Vegetated Areas. Remote Sens. 2025, 17, 3261. https://doi.org/10.3390/rs17183261
Liu C, Wang H, Feng B, Wang C, Lei X, Chang J. Integrating Elevation Frequency Histogram and Multi-Feature Gaussian Mixture Model for Ground Filtering of UAV LiDAR Point Clouds in Densely Vegetated Areas. Remote Sensing. 2025; 17(18):3261. https://doi.org/10.3390/rs17183261
Chicago/Turabian StyleLiu, Chuanxin, Hongtao Wang, Baokun Feng, Cheng Wang, Xiangda Lei, and Jianyang Chang. 2025. "Integrating Elevation Frequency Histogram and Multi-Feature Gaussian Mixture Model for Ground Filtering of UAV LiDAR Point Clouds in Densely Vegetated Areas" Remote Sensing 17, no. 18: 3261. https://doi.org/10.3390/rs17183261
APA StyleLiu, C., Wang, H., Feng, B., Wang, C., Lei, X., & Chang, J. (2025). Integrating Elevation Frequency Histogram and Multi-Feature Gaussian Mixture Model for Ground Filtering of UAV LiDAR Point Clouds in Densely Vegetated Areas. Remote Sensing, 17(18), 3261. https://doi.org/10.3390/rs17183261