HyperVTCN: A Deep Learning Method with Temporal and Feature Modeling Capabilities for Crop Classification with Multisource Satellite Imagery
Abstract
1. Introduction
- HyperVTCN identifies different crops over large areas with good accuracy by exploring the relationships between temporal features, which reflect the growth period of crops.
- HyperVTCN, with feature modeling components, captures coordinated variation patterns across multiple features. These patterns reflect key characteristics of crop phenology, complement crop growth information, and thereby enhance the differentiation of various crops.
- A weighted loss function combining Focal Loss and QR-Ortho Loss is proposed to address class imbalance and feature redundancy, enhancing classification accuracy.
2. Study Area and Data
2.1. Study Area
2.2. Remote Sensing Imagery Data
2.3. Ground Truth Data
3. Method
3.1. Data Processing
3.2. Algorithms for Crop Classification
3.2.1. Patch Embedding
3.2.2. ModernTCN Block
- (1)
- Time information extraction module DWConv
- (2)
- Variable information extraction module ConvFFN
3.2.3. Temporal-Variable Dual Attention (TiVDA)
- (1)
- Variable-wise Attention
- (2)
- Temporal-wise Attention
3.2.4. Output Module
3.2.5. Loss Function
- (1)
- Focal loss
- (2)
- QR-Ortho Loss
3.3. Validation
4. Result
4.1. Results of Comparative Experiments
4.2. Results of Ablation Experiments in HyperVTCN
5. Discussion
5.1. Evaluating the Effectiveness of Feature Modeling
5.2. The Improved Temporal Modeling Performance
5.3. Reliability of Crop Mapping Using HyperVTCN
5.4. Uncertainties and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bovolo, F.; Bruzzone, L.; Solano-Correa, Y.T. 2.08—Multitemporal Analysis of Remotely Sensed Image Data. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 156–185. ISBN 978-0-12-803221-3. [Google Scholar]
- Liu, L.; Chen, X.; Xu, X.; Wang, Y.; Li, S.; Fu, Y. Changes in Production Potential in China in Response to Climate Change from 1960 to 2010. Adv. Meteorol. 2014, 2014, 640320. [Google Scholar] [CrossRef]
- Sachs, J.; Remans, R.; Smukler, S.; Winowiecki, L.; Andelman, S.J.; Cassman, K.G.; Castle, D.; DeFries, R.; Denning, G.; Fanzo, J.; et al. Monitoring the World’s Agriculture. Nature 2010, 466, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Qie, L.; Pu, L.; Tang, P.; Liu, R.; Huang, S.; Xu, F.; Zhong, T. Gains and Losses of Farmland Associated with Farmland Protection Policy and Urbanization in China: An Integrated Perspective Based on Goal Orientation. Land Use Policy 2023, 129, 106643. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Feng, F.; Gao, M.; Liu, R.; Yao, S.; Yang, G. A Deep Learning Framework for Crop Mapping with Reconstructed Sentinel-2 Time Series Images. Comput. Electron. Agric. 2023, 213, 108227. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop Type Mapping without Field-Level Labels: Random Forest Transfer and Unsupervised Clustering Techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Yang, Z.; Diao, C.; Gao, F. Towards Scalable Within-Season Crop Mapping with Phenology Normalization and Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1390–1402. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for Land Cover Mapping via a Multi-Source Deep Learning Architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Pang, M.; Chen, Q.; Shang, J.; Long, W.; Liu, X. Sentinel-1/2 Image Fusion Coupled With CSR, GAN, and Temporal Phenology Feature Construction for Cropland Mapping. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–19. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Q.; Li, J. CMINet: A Unified Cross-Modal Integration Framework for Crop Classification from Satellite Image Time Series. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–13. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, X.; Chen, J.; Zhu, X.; Duan, M.; Qiu, B.; Wan, L.; Tan, X.; Xu, Y.N.; Cao, R. A Robust Index to Extract Paddy Fields in Cloudy Regions from SAR Time Series. Remote Sens. Environ. 2023, 285, 113374. [Google Scholar] [CrossRef]
- Satalino, G.; Mattia, F.; Le Toan, T.; Rinaldi, M. Wheat Crop Mapping by Using ASAR AP Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 527–530. [Google Scholar] [CrossRef]
- Moran, M.S.; Vidal, A.; Troufleau, D.; Inoue, Y.; Mitchell, T.A. Ku- and C-Band SAR for Discriminating Agricultural Crop and Soil Conditions. IEEE Trans. Geosci. Remote Sens. 1998, 36, 265–272. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep Learning Based Multi-Temporal Crop Classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Lei, L.; Wang, X.; Zhang, L.; Hu, X.; Zhong, Y. CROPUP: Historical Products Are All You Need? An End-to-End Cross-Year Crop Map Updating Framework without the Need for in Situ Samples. Remote Sens. Environ. 2024, 315, 114430. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-Area Crop Mapping Using Time-Series MODIS 250 m NDVI Data: An Assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, Z.; Hu, Q.; Yang, J.; Wei, H.; You, L.; Xu, B. Improving Crop Type Mapping by Integrating LSTM with Temporal Random Masking and Pixel-Set Spatial Information. ISPRS J. Photogramm. Remote Sens. 2024, 218, 87–101. [Google Scholar] [CrossRef]
- Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Ma, H.; Lu, P.; Sun, W.; Fan, L.; Wang, H.; Wu, Y.; Wang, Y. Time-Series SAR Monitoring of Rice in Multiple Cropping Modes Combining Statistical and Phenological Characteristics. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–11. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, Q.; Peng, X.; Lai, K.; Wang, J.; Fu, H.; Zhu, J.; Song, Y. Understanding the Temporal Dynamics of Coherence and Backscattering Using Sentinel-1 Imagery for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6875–6893. [Google Scholar] [CrossRef]
- Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, L.; Wu, D. An Enhanced Pixel-Based Phenological Feature for Accurate Paddy Rice Mapping with Sentinel-2 Imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Asgarian, A.; Soffianian, A.; Pourmanafi, S. Crop Type Mapping in a Highly Fragmented and Heterogeneous Agricultural Landscape: A Case of Central Iran Using Multi-Temporal Landsat 8 Imagery. Comput. Electron. Agric. 2016, 127, 531–540. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Xun, L.; Wang, J.; Wu, Z.; Henchiri, M.; Zhang, S.; Zhang, S.; Bai, Y.; Yang, S.; et al. Evaluating the Effectiveness of Machine Learning and Deep Learning Models Combined Time-Series Satellite Data for Multiple Crop Types Classification over a Large-Scale Region. Remote Sens. 2022, 14, 2341. [Google Scholar] [CrossRef]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef]
- He, S.; Peng, P.; Chen, Y.; Wang, X. Multi-Crop Classification Using Feature Selection-Coupled Machine Learning Classifiers Based on Spectral, Textural and Environmental Features. Remote Sens. 2022, 14, 3153. [Google Scholar] [CrossRef]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of Feature Selection on the Accuracy and Spatial Uncertainty of Per-Field Crop Classification Using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102–119. [Google Scholar] [CrossRef]
- Hamidi, M.; Homayouni, S.; Safari, A.; Hasani, H. Deep Learning Based Crop-Type Mapping Using SAR and Optical Data Fusion. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103860. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, N.; Zhang, L.; Hao, L.; Hao, C. Automatic Crop Classification in Northeastern China by Improved Nonlinear Dimensionality Reduction for Satellite Image Time Series. Remote Sens. 2020, 12, 2726. [Google Scholar] [CrossRef]
- Farmonov, N.; Esmaeili, M.; Abbasi-Moghadam, D.; Sharifi, A.; Amankulova, K.; Mucsi, L. HypsLiDNet: 3-D–2-D CNN Model and Spatial–Spectral Morphological Attention for Crop Classification with DESIS and LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11969–11996. [Google Scholar] [CrossRef]
- Sun, J.; Yao, X.; Yan, S.; Xiong, Q.; Li, G.; Huang, J. Large-Scale Crop Mapping Based on Multisource Remote Sensing Intelligent Interpretation: A Spatiotemporal Data Cubes Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13077–13088. [Google Scholar] [CrossRef]
- Lei, L.; Wang, X.; Hu, X.; Zhang, L.; Zhong, Y. PhenoCropNet: A Phenology-Aware-Based SAR Crop Mapping Network for Cloudy and Rainy Areas. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Pham, V.-D.; Tetteh, G.; Thiel, F.; Erasmi, S.; Schwieder, M.; Frantz, D.; van der Linden, S. Temporally Transferable Crop Mapping with Temporal Encoding and Deep Learning Augmentations. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103867. [Google Scholar] [CrossRef]
- Mao, M.; Zhao, H.; Tang, G.; Ren, J. In-Season Crop Type Detection by Combing Sentinel-1A and Sentinel-2 Imagery Based on the CNN Model. Agronomy 2023, 13, 1723. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A Multi-Temporal Deep Learning Approach with Improved Spatial Generalizability for Dynamic Corn and Soybean Mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L.; Yang, Y.; Chen, Y.; Wu, W. Long-Short-Term-Memory-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data. GISci. Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Crisóstomo de Castro Filho, H.; Abílio de Carvalho Júnior, O.; Ferreira de Carvalho, O.L.; Pozzobon de Bem, P.; dos Santos de Moura, R.; Olino de Albuquerque, A.; Rosa Silva, C.; Guimarães Ferreira, P.H.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Zhang, F.; Yin, J.; Wu, N.; Hu, X.; Sun, S.; Wang, Y. A Dual-Path Model Merging CNN and RNN with Attention Mechanism for Crop Classification. Eur. J. Agron. 2024, 159, 127273. [Google Scholar] [CrossRef]
- Tang, P.; Chanussot, J.; Guo, S.; Zhang, W.; Qie, L.; Zhang, P.; Fang, H.; Du, P. Deep Learning with Multi-Scale Temporal Hybrid Structure for Robust Crop Mapping. ISPRS J. Photogramm. Remote Sens. 2024, 209, 117–132. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Self-Attention for Raw Optical Satellite Time Series Classification. ISPRS J. Photogramm. Remote Sens. 2020, 169, 421–435. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, W.; Yang, Z.; Lu, Y.; Zhang, X.; Dong, Y.; Sun, F. A New Attention-Based Deep Metric Model for Crop Type Mapping in Complex Agricultural Landscapes Using Multisource Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104204. [Google Scholar] [CrossRef]
- Tang, P.; Du, P.; Xia, J.; Zhang, P.; Zhang, W. Channel Attention-Based Temporal Convolutional Network for Satellite Image Time Series Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Turkoglu, M.O.; D’Aronco, S.; Perich, G.; Liebisch, F.; Streit, C.; Schindler, K.; Wegner, J.D. Crop Mapping from Image Time Series: Deep Learning with Multi-Scale Label Hierarchies. Remote Sens. Environ. 2021, 264, 112603. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Yang, H. A Dual-Branch U-Net for Staple Crop Classification in Complex Scenes. Remote Sens. 2025, 17, 726. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m Crop Type Maps in Northeast China during 2017–2019. Sci Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Liao, J.; Hu, Y.; Zhang, H.; Liu, L.; Liu, Z.; Tan, Z.; Wang, G. A Rice Mapping Method Based on Time-Series Landsat Data for the Extraction of Growth Period Characteristics. Sustainability 2018, 10, 2570. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, G.; Huang, J.; Song, J.; Li, X.; Du, K.; Huang, H.; Su, W.; Miao, S. A Novel Soybean Mapping Index within the Global Optimal Time Window. ISPRS J. Photogramm. Remote Sens. 2024, 217, 120–133. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping Paddy Rice Agriculture in Southern China Using Multi-Temporal MODIS Images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Song, X.-P.; Huang, W.; Hansen, M.C.; Potapov, P. An Evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS Data for Crop Type Mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Wei, M.; Wang, H.; Zhang, Y.; Li, Q.; Du, X.; Shi, G.; Ren, Y. Investigating the Potential of Sentinel-2 MSI in Early Crop Identification in Northeast China. Remote Sens. 2022, 14, 1928. [Google Scholar] [CrossRef]
- Luo, D.; Wang, X. ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis. In Proceedings of the The Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Li, X.; Lv, C.; Wang, W.; Li, G.; Yang, L.; Yang, J. Generalized Focal Loss: Towards Efficient Representation Learning for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3139–3153. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hahn, S.-J.; Hwang, Y.; Lee, J.; Lee, S. CAFO: Feature-Centric Explanation on Time Series Classification. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 25–29 August 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 1372–1382. [Google Scholar]
- Goodall, C.R. 13 Computation Using the QR Decomposition. In Handbook of Statistics; Computational Statistics; Elsevier: Amsterdam, The Netherlands, 1993; Volume 9, pp. 467–508. [Google Scholar]
- Zhang, H.K.; Luo, D.; Li, Z. Classifying Raw Irregular Time Series (CRIT) for Large Area Land Cover Mapping by Adapting Transformer Model. Sci. Remote Sens. 2024, 9, 100123. [Google Scholar] [CrossRef]
- Vidican, R.; Mălinaș, A.; Ranta, O.; Moldovan, C.; Marian, O.; Ghețe, A.; Ghișe, C.R.; Popovici, F.; Cătunescu, G.M. Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review. Agronomy 2023, 13, 3040. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Z.; Li, S.; Lei, Y.; Chu, Q.; Yin, X.; Chen, F. Large-Scale and High-Resolution Crop Mapping in China Using Sentinel-2 Satellite Imagery. Agriculture 2020, 10, 433. [Google Scholar] [CrossRef]
- Yin, L.; You, N.; Zhang, G.; Huang, J.; Dong, J. Optimizing Feature Selection of Individual Crop Types for Improved Crop Mapping. Remote Sens. 2020, 12, 162. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A High-Performance and in-Season Classification System of Field-Level Crop Types Using Time-Series Landsat Data and a Machine Learning Approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore Iii, B.; Li, C.; He, L.; Zhao, R. Observation of Flooding and Rice Transplanting of Paddy Rice Fields at the Site to Landscape Scales in China Using VEGETATION Sensor Data. Int. J. Remote Sens. 2002, 23, 3009–3022. Available online: https://www.tandfonline.com/doi/abs/10.1080/01431160110107734 (accessed on 9 August 2025). [CrossRef]
- Xuan, F.; Dong, Y.; Li, J.; Li, X.; Su, W.; Huang, X.; Huang, J.; Xie, Z.; Li, Z.; Liu, H.; et al. Mapping Crop Type in Northeast China during 2013–2021 Using Automatic Sampling and Tile-Based Image Classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103178. [Google Scholar] [CrossRef]
Method | Evaluation Metrics | ||||||
---|---|---|---|---|---|---|---|
OA | Kappa | Macro-F1 | Rice_F1 | Corn_F1 | Soybean_F1 | Others_F1 | |
RF | 0.8802 | 0.8305 | 0.8903 | 0.9701 | 0.8371 | 0.8752 | 0.8788 |
CNN | 0.8836 | 0.8346 | 0.8939 | 0.9704 | 0.8365 | 0.8901 | 0.8783 |
LSTM | 0.8911 | 0.8458 | 0.8998 | 0.9637 | 0.8609 | 0.8873 | 0.8873 |
Transformer | 0.8894 | 0.8437 | 0.8992 | 0.9735 | 0.8427 | 0.8940 | 0.8864 |
DCM | 0.8844 | 0.8363 | 0.8947 | 0.9733 | 0.8544 | 0.8688 | 0.8824 |
HyperVTCN | 0.9129 | 0.8760 | 0.9182 | 0.9703 | 0.8789 | 0.9081 | 0.9155 |
Method | FLOPs (G) | Param Count (M) |
---|---|---|
CNN | 0.0729 | 0.5898 |
LSTM | 3.7780 | 3.1846 |
Transformer | 2.5038 | 2.1171 |
DCM | 10.0401 | 8.4675 |
HyperVTCN | 0.9741 | 7.6252 |
Method | Attention Mechanism | Loss Function | OA | Kappa | ||
---|---|---|---|---|---|---|
TiVDA | CEL | FL | QRL | |||
HyperVTCN_noTiVDA | √ | 0.8978 | 0.8543 | |||
HyperVTCN_CEL | √ | √ | 0.9054 | 0.8659 | ||
HyperVTCN_FL | √ | √ | 0.9079 | 0.8691 | ||
HyperVTCN_CEL + QRL | √ | √ | √ | 0.9104 | 0.8726 | |
HyperVTCN | √ | √ | √ | 0.9129 | 0.8760 |
Feature Group | Number of Features | Feature Types Included |
---|---|---|
Spectral-Radar-Temperature-Index Features | 14 | Red, Green, Blue, NIR, SWIR, VV, VH, NDVI, RVI, EVI, GCVI, LSWI, LST, VV/VH |
Spectral-Radar-Temperature Features | 8 | Red, Green, Blue, NIR, SWIR, VV, VH, LST |
Spectral-Radar Features | 7 | Red, Green, Blue, NIR, SWIR, VV, VH |
Spectral Features | 5 | Red, Green, Blue, NIR, SWIR |
Radar Features | 2 | VV, VH |
Dataset | Method | Evaluation Metrics | ||||||
---|---|---|---|---|---|---|---|---|
OA | Kappa | Macro-F1 | Rice_F1 | Corn_F1 | Soybean_F1 | Others_F1 | ||
NDVI | CNN | 0.6231 | 0.4566 | 0.4688 | 0 | 0.4916 | 0.5189 | 0.8649 |
LSTM | 0.7747 | 0.6812 | 0.7538 | 0.7740 | 0.6175 | 0.7538 | 0.8699 | |
Transformer | 0.8333 | 0.7649 | 0.8262 | 0.8311 | 0.7544 | 0.8484 | 0.8709 | |
DCM | 0.7923 | 0.7056 | 0.7736 | 0.7724 | 0.6775 | 0.7703 | 0.8741 | |
HyperVTCN | 0.8476 | 0.7848 | 0.8419 | 0.8652 | 0.7737 | 0.8401 | 0.8887 | |
GCVI | CNN | 0.6432 | 0.486 | 0.4982 | 0 | 0.4881 | 0.6530 | 0.8517 |
LSTM | 0.4506 | 0.2310 | 0.2799 | 0 | 0.4378 | 0 | 0.6816 | |
Transformer | 0.8375 | 0.7707 | 0.8379 | 0.8990 | 0.7460 | 0.8336 | 0.8728 | |
DCM | 0.7965 | 0.7122 | 0.7936 | 0.8571 | 0.6854 | 0.7772 | 0.8548 | |
HyperVTCN | 0.871 | 0.8168 | 0.8729 | 0.9272 | 0.8023 | 0.8752 | 0.8867 | |
LSWI | CNN | 0.804 | 0.7254 | 0.8111 | 0.8721 | 0.7792 | 0.7845 | 0.8084 |
LSTM | 0.8157 | 0.738 | 0.8216 | 0.9078 | 0.7619 | 0.7795 | 0.8370 | |
Transformer | 0.8509 | 0.7911 | 0.8588 | 0.9320 | 0.8076 | 0.8405 | 0.8550 | |
DCM | 0.8342 | 0.7656 | 0.8396 | 0.9246 | 0.7782 | 0.7993 | 0.8563 | |
HyperVTCN | 0.8735 | 0.8210 | 0.8779 | 0.9446 | 0.8204 | 0.8582 | 0.8884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Fang, M.; Kong, W.; Liu, J.; Wu, Y.; Liu, Z.; Qiao, Z.; Liu, L. HyperVTCN: A Deep Learning Method with Temporal and Feature Modeling Capabilities for Crop Classification with Multisource Satellite Imagery. Remote Sens. 2025, 17, 3022. https://doi.org/10.3390/rs17173022
Huang X, Fang M, Kong W, Liu J, Wu Y, Liu Z, Qiao Z, Liu L. HyperVTCN: A Deep Learning Method with Temporal and Feature Modeling Capabilities for Crop Classification with Multisource Satellite Imagery. Remote Sensing. 2025; 17(17):3022. https://doi.org/10.3390/rs17173022
Chicago/Turabian StyleHuang, Xiaoqi, Minzi Fang, Weilang Kong, Jialin Liu, Yuxin Wu, Zhenjie Liu, Zhi Qiao, and Luo Liu. 2025. "HyperVTCN: A Deep Learning Method with Temporal and Feature Modeling Capabilities for Crop Classification with Multisource Satellite Imagery" Remote Sensing 17, no. 17: 3022. https://doi.org/10.3390/rs17173022
APA StyleHuang, X., Fang, M., Kong, W., Liu, J., Wu, Y., Liu, Z., Qiao, Z., & Liu, L. (2025). HyperVTCN: A Deep Learning Method with Temporal and Feature Modeling Capabilities for Crop Classification with Multisource Satellite Imagery. Remote Sensing, 17(17), 3022. https://doi.org/10.3390/rs17173022