A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR
Abstract
1. Introduction
2. Proposed Methods
3. Real-Time Processing Architecture
4. Simulation and Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
DBF | Digital Beamforming |
HRWS | High-Resolution Wide-Swath |
IF | Intermediate Frequency |
RF | Radio Frequency |
PRF | Pulse Repetition Frequency |
PRI | Pulse Repetition Interval |
DTFT | Discrete-Time Fourier Transform |
FPGA | Field-Programmable Gate Array |
SNR | Signal-to-Noise Ratio |
DDS | Direct Digital Synthesizer |
I/Q | In-phase/Quadrature |
LFM | Linear Frequency Modulation |
References
- Freeman, A.; Johnson, W.T.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J. The “Myth” of the minimum SAR antenna area constraint. IEEE Trans. Geosci. Remote Sens. 2002, 38, 320–324. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, P.; Wang, R. New insights into alternating transmitting mode (ATM) for bistatic multichannel SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5212716. [Google Scholar] [CrossRef]
- Gebert, N.; Krieger, G.; Moreira, A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 564–592. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2007, 46, 31–46. [Google Scholar] [CrossRef]
- Han, S.; Deng, Y.; Wang, W.; Zhao, Q.; Qiu, J.; Zhang, Y.; Chen, Z. A Novel Echo Separation Scheme for Space-Time Waveform-Encoding SAR Based on the Second-Order Cone Programming (SOCP) Beamformer. Remote Sens. 2022, 14, 5888. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, Z.; Chen, Z.; Han, S.; Wang, W.; Wen, Y.; Meng, X.; Fan, H. A novel real-time echo separation processing architecture for space–time waveform-encoding SAR based on elevation digital beamforming. Remote Sens. 2022, 14, 213. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2002, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2003, 40, 2375–2383. [Google Scholar] [CrossRef]
- Farneti, E.; Cavalagli, N.; Venanzi, I.; Salvatore, W.; Ubertini, F. Residual service life prediction for bridges undergoing slow landslide-induced movements combining satellite radar interferometry and numerical collapse simulation. Eng. Struct. 2023, 293, 116628. [Google Scholar] [CrossRef]
- Calò, M.; Ruggieri, S.; Nettis, A.; Uva, G. A MTInSAR-based early warning system to appraise deformations in simply supported concrete girder bridges. Struct. Control Health Monit. 2024, 2024, 8978782. [Google Scholar] [CrossRef]
- Krieger, G.; Younis, M.; Gebert, N.; Huber, S.; Bordoni, F.; Patyuchenko, A.; Moreira, A. Advanced digital beamforming concepts for future SAR systems. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 245–248. [Google Scholar]
- Zhou, Y.; Wang, W.; Chen, Z.; Lv, Z.; Han, X.; Liu, J.; Zhang, Q. Adaptive digital beamforming for SAR imaging in elevation. In Proceedings of the EUSAR 2022; 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–4. [Google Scholar]
- Liu, Y.; Cui, L.; Xu, Y.; Zhang, J.; Chen, Z.; Chen, G.; Xue, L.; Xu, L.; Chao, F.; Chen, J. A novel signal-cancellation-based channel phase bias calibration algorithm for spaceborne multi-channel HR WS SAR in azimuth. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 494–497. [Google Scholar]
- Xiao, F.; Ding, Z.; Li, Z.; Long, T. Channel error effect analysis for reconstruction algorithm in dual-channel SAR imaging. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1563–1567. [Google Scholar] [CrossRef]
- Li, B.; Sun, G.; Xing, M. The Study on Range DBF Method for Real Data Processing. In Proceedings of the 2018 China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Younis, M.; Laux, C.; Al-Kahachi, N.; López-Dekker, P.; Krieger, G.; Moreira, A. Calibration of multi-channel spaceborne SAR-Challenges and strategies. In Proceedings of the EUSAR 2014, 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Wu, D.; Zhang, Y.; Zhu, D.; Wang, S.; Shen, M. A channel calibration algorithm based on isolated scatterers for multi-channel HRWS-SAR. IEEE Access 2019, 7, 135665–135677. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Zhao, W.; Cao, W.; Hou, X. A channel equalization approach using the spatial correlation property of clutters. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013; pp. 1–4. [Google Scholar]
- Zhou, Y.; Wang, R.; Deng, Y.; Yu, W.; Fan, H.; Liang, D.; Zhao, Q. A novel approach to Doppler centroid and channel errors estimation in azimuth multi-channel SAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8430–8444. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, P.; Li, B.; Li, J.; Chen, Y.; Wang, Y.; Nan, Y.; Wang, R.; Wu, Y. An efficient phase error calibration method for azimuth multichannel SAR based on least spectrum difference. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5207213. [Google Scholar] [CrossRef]
- Hoffman, J.P.; Horst, S.; Perkovic, D.; Shaffer, S.; Ghaemi, H.; Veilleux, L. Advances in digital calibration techniques enabling real-time beamforming SweepSAR architectures. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–9. [Google Scholar]
- Chuang, C.L.; Shaffer, S.; Smythe, R.; Niamsuwan, N.; Li, S.; Liao, E.; Lim, C.; Morfopolous, A.; Veilleux, L. DESDynI Quad First Stage Processor-a four channel digitizer and digital beam forming processor. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6. [Google Scholar]
- Younis, M.; Rommel, T.; de Almeida, F.; Huber, S.; Martone, M.; Villano, M.; Krieger, G. Investigations on the internal calibration of multi-channel SAR. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5386–5389. [Google Scholar]
- Jäger, M.; Scheiber, R.; Reigber, A. External calibration of antenna pointing and positions in airborne sar systems. In Proceedings of the 2019 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 41–44. [Google Scholar]
- Song, M.; Yan, M.; Zhang, R.; Li, Q.; Wang, J. TI-ADC System Mismatch Error Estimation and Compensation. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2867–2870. [Google Scholar]
- Nguyen, M.P. Omega-K algorithm—A generalization for highly squinted spotlight SAR imaging with dechirp-on-receive. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Republic of Korea, 26–30 September 2011; pp. 1–4. [Google Scholar]
- Mizzoni, R.; Capece, P.; Contu, S.; Meschini, A.; Ivagnes, M.; Rosati, G. Antennas for observation, exploration and navigation in ThalesAleniaSpace-Italia: Past and present challenges. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1516–1520. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, Z.; Wang, R.; Wang, P.; Zhang, H.; Du, J.; Wang, W.; Chen, Z.; Zhou, Y.; Jia, H.; et al. A novel weight generator in real-time processing architecture of DBF-SAR. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5204915. [Google Scholar] [CrossRef]
- Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8, 330–334. [Google Scholar] [CrossRef]
- Feng, F.; Dang, H.; Tan, X.; Li, G.; Li, C. An improved scheme of Digital Beam-Forming in elevation for spaceborne SAR. In Proceedings of the IET International Radar Conference 2013, Xi’an China, 14–16 April 2013; pp. 1–6. [Google Scholar]
- Wang, W.; Wang, R.; Deng, Y.; Balz, T.; Hong, F.; Xu, W. An Improved Processing Scheme of Digital Beam-Forming in Elevation for Reducing Resource Occupation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 309–313. [Google Scholar] [CrossRef]
- Torres, R.; Lokas, S.; Moller, H.; Zink, M.; Simpson, D. The TerraSAR-L mission and system. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 7, pp. 4519–4522. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Carrier Frequency | GHz | |
Number of Elevation Channels | 16 | |
Pulse Repetition Frequency | 2000 Hz | |
Sample Rate | Ghz | |
IF Frequency | 900 MHz | |
Digital Complex IF Frequency | MHz | |
FPGA Prime Clock | 100 MHz | |
Signal Pulse Duration | 50 μs | |
Signal BandWidth | 500 Mhz | |
Chirp Rate | Hz/s | |
Sample Points | 66,000 | |
Signal-to-Noise Ratio | 20 dB | |
Internal Calibration Loop Reference Length | L | 10 m |
Errors | Ranges | Unit |
---|---|---|
amplitude | −3~3 | dB |
phase | ~180 | degree |
time-delay | [−3:0.5:3] | SaGrid |
Parameter | Value |
---|---|
Carrier frequency | 9.6 GHz |
Velocity | 70 m/s |
Height | 4200 m |
Incident angle | |
Signal bandwidth | 500 MHz |
Sampling frequency | 1200 MHz |
Signal pulse duration | 10 μs |
Number of elevation channels | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Zhang, Z.; Deng, Y.; Zhang, H.; Wang, W.; Chen, Z.; Hou, S.; Feng, Y.; Wang, N. A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR. Remote Sens. 2025, 17, 2890. https://doi.org/10.3390/rs17162890
Qiu J, Zhang Z, Deng Y, Zhang H, Wang W, Chen Z, Hou S, Feng Y, Wang N. A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR. Remote Sensing. 2025; 17(16):2890. https://doi.org/10.3390/rs17162890
Chicago/Turabian StyleQiu, Jinsong, Zhimin Zhang, Yunkai Deng, Heng Zhang, Wei Wang, Zhen Chen, Sixi Hou, Yihang Feng, and Nan Wang. 2025. "A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR" Remote Sensing 17, no. 16: 2890. https://doi.org/10.3390/rs17162890
APA StyleQiu, J., Zhang, Z., Deng, Y., Zhang, H., Wang, W., Chen, Z., Hou, S., Feng, Y., & Wang, N. (2025). A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR. Remote Sensing, 17(16), 2890. https://doi.org/10.3390/rs17162890