Variability and Trends in Earth’s Radiative Energy Budget from Uvsq-Sat (2021–2024) and CERES Observations (2013–2024)
Abstract
1. Introduction
2. Importance of ERB at TOA and EEI Measurements for the Next Decades
3. Instrument Description, Calibration, and Relevance to ERB Measurement Challenges
4. Methodology for Reconstructing TOA Radiative Flux Maps from Uvsq-Sat and Inspire-Sat Time-Series Data
4.1. Times Series Used for the Flux Maps Reconstruction
4.2. Map Reconstruction Method from Satellites Time Series
- The Earth is modeled as a regular grid in latitude and longitude. Each grid cell has coordinates and an area, as defined in Equation (1).
4.3. Uvsq-Sat Map Reconstruction Examples
5. Results
5.1. Evolution of Earth’s TOA Radiative Fluxes and EEI Since 2013
5.2. Role of Cloud Cover in Modulating OSR
5.3. OHC and EEI as Complementary Measurements
5.4. Advancing Climate Monitoring with Small Satellite Constellations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Uvsq-Sat—Regional OSR Plots (MAM 2021–2024)
Appendix B. Uvsq-Sat—Regional OLR Plots (MAM 2021–2024)
References
- Kiehl, J.T.; Trenberth, K.E. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 1997, 78, 197–208. [Google Scholar] [CrossRef]
- Stephens, G.L.; Li, J.; Wild, M.; Clayson, C.A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P.W.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 2011, 11, 13421–13449. [Google Scholar] [CrossRef]
- von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Change 2016, 6, 138–144. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Minière, A.; Gues, F.; Cuesta-Valero, F.J.; Kirchengast, G.; Adusumilli, S.; Straneo, F.; Ablain, M.; Allan, R.P.; Barker, P.M.; et al. Heat stored in the Earth system 1960–2020: Where does the energy go? Earth Syst. Sci. Data 2023, 15, 1675–1709. [Google Scholar] [CrossRef]
- Johnson, G.C.; Lyman, J.M.; Loeb, N.G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change 2016, 6, 639–640. [Google Scholar] [CrossRef]
- Gristey, J.J.; Chiu, J.C.; Gurney, R.J.; Han, S.C.; Morcrette, C.J. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites. J. Geophys. Res. Atmos. 2017, 122, 1114–1131. [Google Scholar] [CrossRef]
- Wong, T.; Smith, G.L.; Kato, S.; Loeb, N.G.; Kopp, G.; Shrestha, A.K. On the lessons learned from the operations of the ERBE nonscanner instrument in space and the production of the nonscanner TOA radiation budget data set. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5936–5947. [Google Scholar] [CrossRef]
- Barkstrom, B.R. The Earth Radiation Budget Experiment (ERBE). Bull. Am. Meteorol. Soc. 1984, 65, 1170–1185. [Google Scholar] [CrossRef]
- Meftah, M.; Damé, L.; Keckhut, P.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.; Bertran, E.; Carta, J.P.; Rogers, D.; Abbaki, S.; et al. UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sens. 2020, 12, 92. [Google Scholar] [CrossRef]
- Meftah, M.; Boust, F.; Keckhut, P.; Sarkissian, A.; Boutéraon, T.; Bekki, S.; Damé, L.; Galopeau, P.; Hauchecorne, A.; Dufour, C.; et al. INSPIRE-SAT 7, a Second CubeSat to Measure the Earth’s Energy Budget and to Probe the Ionosphere. Remote Sens. 2022, 14, 186. [Google Scholar] [CrossRef]
- Meftah, M.; Clavier, C.; Sarkissian, A.; Hauchecorne, A.; Bekki, S.; Lefèvre, F.; Galopeau, P.; Dahoo, P.R.; Pazmino, A.; Vieau, A.J.; et al. Uvsq-Sat NG, a New CubeSat Pathfinder for Monitoring Earth Outgoing Energy and Greenhouse Gases. Remote Sens. 2023, 15, 4876. [Google Scholar] [CrossRef]
- Meftah, M.; Dufour, C.; Bolsée, D.; Van Laeken, L.; Clavier, C.; Chandran, A.; Chang, L.; Sarkissian, A.; Galopeau, P.; Hauchecorne, A.; et al. Advancing CubeSats Capabilities: Ground-Based Calibration of Uvsq-Sat NG Satellite’s NIR Spectrometer and Determination of the Extraterrestrial Solar Spectrum. Remote Sens. 2024, 16, 3655. [Google Scholar] [CrossRef]
- Clavier, C.; Meftah, M.; Sarkissian, A.; Romand, F.; Hembise Fanton d’Andon, O.; Mangin, A.; Bekki, S.; Dahoo, P.R.; Galopeau, P.; Lefèvre, F.; et al. Assessing Greenhouse Gas Monitoring Capabilities Using SolAtmos End-to-End Simulator: Application to the Uvsq-Sat NG Mission. Remote Sens. 2024, 16, 1442. [Google Scholar] [CrossRef]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Hansen, J.; Nazarenko, L.; Ruedy, R.; Sato, M.; Willis, J.; Del Genio, A.; Koch, D.; Lacis, A.; Lo, K.; Menon, S.; et al. Earth’s Energy Imbalance: Confirmation and Implications. Science 2005, 308, 1431–1435. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef]
- Otto, A.; Otto, F.E.L.; Boucher, O.; Church, J.; Hegerl, G.; Forster, P.M.; Gillett, N.P.; Gregory, J.; Johnson, G.C.; Knutti, R.; et al. Energy budget constraints on climate response. Nat. Geosci. 2013, 6, 415–416. [Google Scholar] [CrossRef]
- Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; et al. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations. Astron. Astrophys. 2018, 611, A1. [Google Scholar] [CrossRef]
- Meftah, M.; Sarkissian, A.; Keckhut, P.; Hauchecorne, A. The SOLAR-HRS New High-Resolution Solar Spectra for Disk-Integrated, Disk-Center, and Intermediate Cases. Remote Sens. 2023, 15, 3560. [Google Scholar] [CrossRef]
- Mauritsen, T.; Tsushima, Y.; Meyssignac, B.; Loeb, N.G.; Hakuba, M.; Pilewskie, P.; Cole, J.; Suzuki, K.; Ackerman, T.P.; Allan, R.P.; et al. Earth’s Energy Imbalance More Than Doubled in Recent Decades. AGU Adv. 2025, 6, e2024AV001636. [Google Scholar] [CrossRef]
- Raghuraman, S.P.; Paynter, D.; Ramaswamy, V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance. Nat. Commun. 2021, 12, 4577. [Google Scholar] [CrossRef]
- Loeb, N.G.; Johnson, G.C.; Thorsen, T.J.; Lyman, J.M.; Rose, F.G.; Kato, S. Satellite and Ocean Data Reveal Marked Increase in Earth’s Heating Rate. Geophys. Res. Lett. 2021, 48, e2021GL093047. [Google Scholar] [CrossRef]
- Kramer, R.J.; He, H.; Soden, B.J.; Oreopoulos, L.; Myhre, G.; Forster, P.M.; Smith, C.J. Observational Evidence of Increasing Global Radiative Forcing. Geophys. Res. Lett. 2021, 48, e2020GL091585. [Google Scholar] [CrossRef]
- Subba, T.; Gogoi, M.M.; Pathak, B.; Bhuyan, P.K.; Babu, S.S. Recent trend in the global distribution of aerosol direct radiative forcing from satellite measurements. Atmos. Sci. Lett. 2020, 21, e975. [Google Scholar] [CrossRef]
- Quaas, J.; Jia, H.; Smith, C.; Albright, A.L.; Aas, W.; Bellouin, N.; Boucher, O.; Doutriaux-Boucher, M.; Forster, P.M.; Grosvenor, D.; et al. Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmos. Chem. Phys. 2022, 22, 12221–12239. [Google Scholar] [CrossRef]
- Loeb, N.G.; Wang, H.; Allan, R.P.; Andrews, T.; Armour, K.; Cole, J.N.S.; Dufresne, J.L.; Forster, P.; Gettelman, A.; Guo, H.; et al. New Generation of Climate Models Track Recent Unprecedented Changes in Earth’s Radiation Budget Observed by CERES. Geophys. Res. Lett. 2020, 47, e2019GL086705. [Google Scholar] [CrossRef]
- Millán, L.; Santee, M.L.; Lambert, A.; Livesey, N.J.; Werner, F.; Schwartz, M.J.; Pumphrey, H.C.; Manney, G.L.; Wang, Y.; Su, H.; et al. The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere. Geophys. Res. Lett. 2022, 49, e2022GL099381. [Google Scholar] [CrossRef]
- Jenkins, S.; Smith, C.; Allen, M.; Grainger, R. Tonga eruption increases chance of temporary surface temperature anomaly above 1.5C. Nat. Clim. Change 2023, 13, 127–129. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Wang, Y.; Ueyama, R.; Dessler, A.; Taha, G.; Yu, W. The Estimated Climate Impact of the Hunga Tonga-Hunga Ha’apai Eruption Plume. Geophys. Res. Lett. 2023, 50, e2023GL104634. [Google Scholar] [CrossRef]
- Yu, P.; Portmann, R.W.; Peng, Y.; Liu, C.C.; Zhu, Y.; Asher, E.; Bai, Z.; Lu, Y.; Bian, J.; Mills, M.; et al. Radiative Forcing from the 2014–2022 Volcanic and Wildfire Injections. Geophys. Res. Lett. 2023, 50, e2023GL103791. [Google Scholar] [CrossRef]
- Wallace, J.M.; Zhang, Y.; Renwick, J.A. Dynamic Contribution to Hemispheric Mean Temperature Trends. Science 1995, 270, 780–783. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Balmaseda, M.A. Earth’s Energy Imbalance. J. Clim. 2014, 27, 3129–3144. [Google Scholar] [CrossRef]
- Loeb, N.G.; Doelling, D.R.; Kato, S.; Su, W.; Mlynczak, P.E.; Wilkins, J.C. Continuity in Top-of-Atmosphere Earth Radiation Budget Observations. J. Clim. 2024, 37, 6093–6108. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, J.; Wang, J.; Yu, X. Preface to the special issue on Fengyun Meteorological Satellites: Data, application and assessment. Adv. Atmos. Sci. 2021, 38, 1265–1266. [Google Scholar] [CrossRef]
- Xian, D.; Zhang, P.; Gao, L.; Sun, R.; Zhang, H.; Jia, X. Fengyun meteorological satellite products for earth system science applications. Adv. Atmos. Sci. 2021, 38, 1267–1284. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, P.; Zhu, L.; Xu, G.; Cao, T.; Li, Q. Moon-based Earth Radiation Budget Observation for Chang’e-7 Lunar Mission. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar] [CrossRef]
- Meftah, M.; Boutéraon, T.; Dufour, C.; Hauchecorne, A.; Keckhut, P.; Finance, A.; Bekki, S.; Abbaki, S.; Bertran, E.; Damé, L.; et al. The UVSQ-SAT/INSPIRESat-5 CubeSat Mission: First In-Orbit Measurements of the Earth’s Outgoing Radiation. Remote Sens. 2021, 13, 1449. [Google Scholar] [CrossRef]
- Swartz, W.H.; Lorentz, S.R.; Papadakis, S.J.; Huang, P.M.; Smith, A.W.; Deglau, D.M.; Yu, Y.; Reilly, S.M.; Reilly, N.M.; Anderson, D.E. RAVAN: CubeSat demonstration for multi-point Earth Radiation Budget measurements. Remote Sens. 2019, 11, 796. [Google Scholar] [CrossRef]
- Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett. 2000, 27, 2425–2428. [Google Scholar] [CrossRef]
- Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M.; Lindholm, D. A solar irradiance climate data record. Bull. Am. Meteorol. Soc. 2016, 97, 1265–1282. [Google Scholar] [CrossRef]
- Yeo, K.L.; Krivova, N.A.; Solanki, S.K.; Glassmeier, K.H. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 2014, 570, A85. [Google Scholar] [CrossRef]
- NASA/LARC/SD/ASDC. CERES Regionally Averaged TOA Fluxes, Clouds and Aerosols Hourly Terra Edition4A; NASA Langley Research Center (LaRC): Hampton, VA, USA, 2015. [Google Scholar]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hall, B.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.P.; et al. Indicators of Global Climate Change 2023: Annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2024, 16, 2625–2658. [Google Scholar] [CrossRef]
- Hodnebrog, O.; Myhre, G.; Jouan, C.; Andrews, T.; Forster, P.M.; Jia, H.; Loeb, N.G.; Olivié, D.J.; Paynter, D.; Quaas, J.; et al. Recent reductions in aerosol emissions have increased Earth’s energy imbalance. Commun. Earth Environ. 2024, 5, 166. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Cassou, C.; Hauser, M.; Hausfather, Z.; Lee, J.Y.; Palmer, M.D.; et al. Indicators of Global Climate Change 2024: Annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2025, 17, 2641–2680. [Google Scholar] [CrossRef]
- Bagnell, A.; DeVries, T. 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. Nat. Commun. 2021, 12, 4604. [Google Scholar] [CrossRef]
- Hakuba, M.Z.; Frederikse, T.; Landerer, F.W. Earth’s energy imbalance from the ocean perspective (2005–2019). Geophys. Res. Lett. 2021, 48, e2021GL093624. [Google Scholar] [CrossRef]
- Marti, F.; Blazquez, A.; Meyssignac, B.; Ablain, M.; Barnoud, A.; Fraudeau, R.; Jugier, R.; Chenal, J.; Larnicol, G.; Pfeffer, J.; et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. Earth Syst. Sci. Data 2022, 14, 229–249. [Google Scholar] [CrossRef]
- Marti, F.; Meyssignac, B.; Rousseau, V.; Ablain, M.; Fraudeau, R.; Blazquez, A.; Fourest, S. Monitoring global ocean heat content from space geodetic observations to estimate the Earth Energy Imbalance. In Copernicus Ocean State Report (OSR8), 8th ed.; Copernicus Publications, State Planet: Göttingen, Germany, 2024. [Google Scholar]
- Meyssignac, B.; Boyer, T.; Zhao, Z.; Hakuba, M.Z.; Landerer, F.W.; Stammer, D.; Köhl, A.; Kato, S.; L’ecuyer, T.; Ablain, M.; et al. Measuring global ocean heat content to estimate the earth energy imbalance. Front. Mar. Sci. 2019, 6, 432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meftah, M.; Dufour, C.; Keckhut, P.; Sarkissian, A.; Zhu, P. Variability and Trends in Earth’s Radiative Energy Budget from Uvsq-Sat (2021–2024) and CERES Observations (2013–2024). Remote Sens. 2025, 17, 2751. https://doi.org/10.3390/rs17162751
Meftah M, Dufour C, Keckhut P, Sarkissian A, Zhu P. Variability and Trends in Earth’s Radiative Energy Budget from Uvsq-Sat (2021–2024) and CERES Observations (2013–2024). Remote Sensing. 2025; 17(16):2751. https://doi.org/10.3390/rs17162751
Chicago/Turabian StyleMeftah, Mustapha, Christophe Dufour, Philippe Keckhut, Alain Sarkissian, and Ping Zhu. 2025. "Variability and Trends in Earth’s Radiative Energy Budget from Uvsq-Sat (2021–2024) and CERES Observations (2013–2024)" Remote Sensing 17, no. 16: 2751. https://doi.org/10.3390/rs17162751
APA StyleMeftah, M., Dufour, C., Keckhut, P., Sarkissian, A., & Zhu, P. (2025). Variability and Trends in Earth’s Radiative Energy Budget from Uvsq-Sat (2021–2024) and CERES Observations (2013–2024). Remote Sensing, 17(16), 2751. https://doi.org/10.3390/rs17162751