Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Data Processing
2.2.1. FVC Data
2.2.2. Environmental Conditions
- 1.
- Terrain data
- 2.
- Climate data
- 3.
- Soil water content data
2.2.3. Land Use Type Data
2.2.4. Land Use Intensity Data
2.3. Methods
2.3.1. Data Preprocessing and Standardization
2.3.2. Spatiotemporal Analysis
- 1.
- Trend analysis of FVC and associated driving factors
- 2.
- Stability analysis of FVC
2.3.3. Driving Factor Detection
- 1.
- Pearson correlation coefficients among FVC and associated driving factors
- 2.
- Geographical detector
- 3.
- Random forest model
3. Results
3.1. Temporal and Spatial Variation in FVC
3.2. Spatiotemporal Heterogeneity and Stability of FVC
3.3. Changes in the Influencing Factors
3.4. Driving Mechanism of FVC
4. Discussion
4.1. Spatiotemporal Variation in FVC
4.2. Driving Mechanism of Spatiotemporal Variation in FVC
4.3. Limitations and Future Perspectives
5. Conclusions
- (1)
- The vegetation coverage in Xinjiang was high in the northwest and low in the southeast, primarily distributed in mountainous regions and along river systems, where favorable hydrothermal conditions support vegetation growth;
- (2)
- The annual peak FVC increased significantly at a rate of 0.0508 yr−1 over the study period, with 33.72% of the region showing significant improvements and 5.49% experiencing significant degradation;
- (3)
- Anthropogenic activities were the primary driving factors for the spatiotemporal variation in FVC, where the land use type divided the FVC values, and management was the most important factor for FVC trends.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Fu, B.; Wu, X.; Li, Y.; Feng, Y.; Wang, S.; Wei, F.; Zhang, L. Vegetation Resilience Does Not Increase Consistently with Greening in China’s Loess Plateau. Commun. Earth Environ. 2023, 4, 336. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.; Dong, B. Changes in Global Vegetation Activity and Its Driving Factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- Kempf, M. Enhanced Trends in Spectral Greening and Climate Anomalies across Europe. Environ. Monit. Assess. 2023, 195, 260. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Greenberg, J. Climate-limited Vegetation Change in the Conterminous United States of America. Glob. Change Biol. 2024, 30, e17204. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, C.; Liu, Z.; Zhang, Y. Vegetation Dynamics in Mainland Southeast Asia: Climate and Anthropogenic Influences. Land Use Policy 2025, 153, 107546. [Google Scholar] [CrossRef]
- Hassanpour, R.; Majnooni-Heris, A.; Fakheri Fard, A.; Verrelst, J.; Gao, W.; Yang, J.; Ren, S.; Hailong, L.; Kuttippurath, J.; Kashyap, R. Greening of India: Forests or Croplands? Appl. Geogr. 2023, 161, 103115. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Bai, J.; Xu, T. Investigating the Zonal Response of Spatiotemporal Dynamics of Australian Grasslands to Ongoing Climate Change. Land 2025, 14, 296. [Google Scholar] [CrossRef]
- Muthoni, F.K.; Manda, J.; Dubovyk, O. Disentangling Climate and Human Drivers of Land Degradation in East and Southern Africa. Land Degrad. Dev. 2023, 36, 3801–3816. [Google Scholar] [CrossRef]
- Shi, S.; Yang, P.; van der Tol, C. Spatial-Temporal Dynamics of Land Surface Phenology over Africa for the Period of 1982–2015. Heliyon 2023, 9, e16413. [Google Scholar] [CrossRef]
- Long, Q.; Wang, F.; Ge, W.; Jiao, F.; Han, J.; Chen, H.; Roig, F.A.; Abraham, E.M.; Xie, M.; Cai, L. Temporal and Spatial Change in Vegetation and Its Interaction with Climate Change in Argentina from 1982 to 2015. Remote Sens. 2023, 15, 1926. [Google Scholar] [CrossRef]
- Hassanpour, R.; Majnooni-Heris, A.; Fakheri Fard, A.; Verrelst, J.; Gao, W.; Yang, J.; Ren, S.; Hailong, L.; Kuttippurath, J.; Kashyap, R.; et al. A Near Four-Decade Time Series Shows the Hawaiian Islands Have Been Browning Since the 1980s. Environ. Manag. 2023, 71, 965–980. [Google Scholar] [CrossRef]
- Wang, L.; Jiao, W.; MacBean, N.; Rulli, M.C.; Manzoni, S.; Vico, G.; D’Odorico, P. Dryland Productivity under a Changing Climate. Nat. Clim. Chang. 2022, 12, 981–994. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-009-15798-8. [Google Scholar]
- DOdorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global Desertification: Drivers and Feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and Impacts of Changes in China’s Drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Li, Z.; Pan, J. Spatiotemporal Changes in Vegetation Net Primary Productivity in the Arid Region of Northwest China, 2001 to 2012. Front. Earth Sci. 2018, 12, 108–124. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, K.; Huntingford, C.; Wei, S.; Li, X.; Myneni, R.B.; Piao, S. Vegetation Greenness in 2024. Nat. Rev. Earth Environ. 2025, 6, 255–257. [Google Scholar] [CrossRef]
- Xu, L.; Gao, G.; Wang, X.; Fu, B. Distinguishing the Effects of Climate Change and Vegetation Greening on Soil Moisture Variability along Aridity Gradient in the Drylands of Northern China. Agric. For. Meteorol. 2023, 343, 109786. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Dickoré, W.B. Zonation of Flora and Vegetation of the Northern Declivity of the Karakoram/Kunlun Mountains (SW Xinjiang China). GeoJournal 1991, 25, 265–284. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Z.; Saiken, A.; Rui, S.; Liu, X. Natural Heritage Value of Xinjiang Tianshan and Global Comparative Analysis. J. Mt. Sci. 2012, 9, 262–273. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, W.; Wang, H.; Wang, D. Spatiotemporal Evolution and Driving Factors Analysis of Fractional Vegetation Coverage in the Arid Region of Northwest China. Sci. Total Environ. 2024, 954, 176271. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Altansukh, O.; Chuluun, T. Spatiotemporal Evolution and Driving Mechanisms of Desertification on the Mongolian Plateau. Sci. Total Environ. 2024, 941, 173566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pei, Q.; Chen, Y.; Guo, Y.; Hou, Y.; Sun, R. Temporal and Spatial Changes Monitoring of Vegetation Coverage in Qilian County Based on GF-1 Image. Procedia Comput. Sci. 2019, 162, 662–672. [Google Scholar] [CrossRef]
- Zhou, W.; Li, C.; Fu, B.; Wang, S.; Ren, Z.; Stringer, L.C. Changes and Drivers of Vegetation Productivity in China’s Drylands under Climate Change. Environ. Res. Lett. 2024, 19, 114001. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Yung Jim, C.; Weng Chan, N.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation Cover Changes in China Induced by Ecological Restoration-Protection Projects and Land-Use Changes from 2000 to 2020. CATENA 2022, 217, 106530. [Google Scholar] [CrossRef]
- Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent Change of Vegetation Growth Trend in China. Environ. Res. Lett. 2011, 6, 044027. [Google Scholar] [CrossRef]
- Song, D.; Hu, Z.; Yu, Y.; Zhang, F.; Sun, H. Assessing Ecological Impacts and Recovery in Coal Mining Areas: A Remote Sensing and Field Data Analysis in Northwest China. Remote Sens. 2024, 16, 2236. [Google Scholar] [CrossRef]
- Belgacem, A.O.; Alharbi, M.; Alhajoj, A.; Alruwaili, F.; Njeru, J. Effects of Community Camel and Sheep Grazing on Vegetation Cover in Al-Mayla Rangeland in Northern Saudi Arabia. Range Manag. Agrofor. 2023, 44, 226–232. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Z.; Zhang, Y.; Gong, D.; Liu, L.; Li, K. Effectiveness of Conservation Measures Based on Assessment of Grazing Intensity in the Yellow River Source Region. Land 2025, 14, 813. [Google Scholar] [CrossRef]
- Polley, H.W.; Kolodziejczyk, C.A.; Jones, K.A.; Smith, D.R. Grazing Treatment Influences Recovery of Mesic Grassland from Seasonal Drought: An Assessment Using Unmanned Aerial Vehicle−Enabled Remote Sensing. Clim. Chang. 2022, 82, 12–19. [Google Scholar] [CrossRef]
- Robertson, R.D.; De Pinto, A.; Cenacchi, N. Assessing the Future Global Distribution of Land Ecosystems as Determined by Climate Change and Cropland Incursion. Clim. Chang. 2023, 176, 108. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S.; Du, W. Ecological Disturbance Effects of Surface Vegetation during Coal Mining in Arid Regions of Western China. Environ. Monit. Assess. 2024, 196, 498. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, R.; Majnooni-Heris, A.; Fakheri Fard, A.; Verrelst, J. Monitoring Biophysical Variables (FVC, LAI, LCab, and CWC) and Cropland Dynamics at Field Scale Using Sentinel-2 Time Series. Remote Sens. 2025, 16, 2284. [Google Scholar] [CrossRef]
- Liu, W.; Mo, X.; Liu, S.; Lu, C. Impacts of Climate Change on Grassland Fractional Vegetation Cover Variation on the Tibetan Plateau. Sci. Total Environ. 2024, 939, 173320. [Google Scholar] [CrossRef]
- Batool, M.; Sarrazin, F.J.; Attinger, S.; Basu, N.B.; Van Meter, K.; Kumar, R. Long-Term Annual Soil Nitrogen Surplus across Europe (1850–2019). Sci. Data 2022, 9, 612. [Google Scholar] [CrossRef]
- Shangguan, Y.; Min, X.; Wang, N.; Tong, C.; Shi, Z. A Long-Term, High-Accuracy and Seamless 1km Soil Moisture Dataset over the Qinghai-Tibet Plateau during 2001–2020 Based on a Two-Step Downscaling Method. GIScience Remote Sens. 2024, 61, 2290337. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B. MODIS Vegetation Index User’s Guide (MOD13 Series); Version 3.10; (Collection 6.1); September 2019; Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2019; Available online: https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_MOD13_C6.pdf (accessed on 22 July 2025).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. ASTER Global Digital Elevation Model Version 2—Summary of Validation Results; Report to the ASTER GDEM Version 2 Validation Team, USA. 2011. Available online: https://lpdaac.usgs.gov/documents/220/Summary_GDEM2_validation_report_final.pdf (accessed on 22 July 2025).
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Zhao, T. A 21-Year Dataset (2000–2020) of Gap-Free Global Daily Surface Soil Moisture at 1-Km Grid Resolution. Sci. Data 2023, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European Contribution to the Generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Lebakula, V.; Sims, K.; Reith, A.; Rose, A.; McKee, J.; Coleman, P.; Kaufman, J.; Urban, M.; Jochem, C.; Whitlock, C.; et al. LandScan Global 30 Arcsecond Annual Global Gridded Population Datasets from 2000 to 2022. Sci. Data 2025, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, J.; Kattel, G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Wang, D.; Peng, Q.; Li, X.; Zhang, W.; Xia, X.; Qin, Z.; Ren, P.; Liang, S.; Yuan, W. A Long-Term High-Resolution Dataset of Grasslands Grazing Intensity in China. Sci. Data 2024, 11, 1194. [Google Scholar] [CrossRef]
- Najafi, Z.; Fatehi, P.; Darvishsefat, A.A. Vegetation dynamics trend using satellite time series imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W18, 783–788. [Google Scholar] [CrossRef]
- Ohlson, J.A.; Kim, S. Linear Valuation without OLS: The Theil-Sen Estimation Approach. Rev. Account. Stud. 2015, 20, 395–435. [Google Scholar] [CrossRef]
- Peng, H.; Wang, S.; Wang, X. Consistency and Asymptotic Distribution of the Theil–Sen Estimator. J. Stat. Plan. Inference 2008, 138, 1836–1850. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Wang, J.; Haining, R.; Zhang, T.; Xu, C.; Hu, M.; Yin, Q.; Li, L.; Zhou, C.; Li, G.; Chen, H. Statistical Modeling of Spatially Stratified Heterogeneous Data. Ann. Am. Assoc. Geogr. 2024, 114, 499–519. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, L.; Ding, A.; Yuan, Y.; Li, Z.; Hou, Y.; Ren, L.; Zhang, S. Geodetector Model-Based Quantitative Analysis of Vegetation Change Characteristics and Driving Forces: A Case Study in the Yongding River Basin in China. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104027. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Li, Y.; Jia, Q.; Shen, X.; Xia, X. Spatiotemporal Variations in the Soil Quality of Agricultural Land and Its Drivers in China from 1980 to 2018. Sci. Total Environ. 2023, 892, 164649. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-4/W3, 47–50. [Google Scholar] [CrossRef]
- Duan, Q.; Tan, M. Using a Geographical Detector to Identify the Key Factors That Influence Urban Forest Spatial Differences within China. Int. J. Appl. Earth Obs. Geoinf. 2020, 49, 126623. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative Spatial Analysis of Vegetation Dynamics and Potential Driving Factors in a Typical Alpine Region on the Northeastern Tibetan Plateau Using the Google Earth Engine. CATENA 2021, 206, 105500. [Google Scholar] [CrossRef]
- Nie, T.; Dong, G.; Jiang, X.; Lei, Y. Spatio-Temporal Changes and Driving Forces of Vegetation Coverage on the Loess Plateau of Northern Shaanxi. Int. J. Geogr. Inf. Sci. 2020, 13, 613. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable Isotopic Variations in West China: A Consideration of Moisture Sources. J. Geophys. Res. Atmos. 2007, 112, D10112. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, G.; Wang, Q.Q.; Ye, L.; Lin, X.; Lu, S.; Jiao, Y.; Li, R.; Meng, G.; Wang, Y.; et al. Influence of Mountain Orientation on Precipitation Isotopes in the Westerly Belt of Eurasia. Glob. Planet. Chang. 2024, 240, 104543. [Google Scholar] [CrossRef]
- Jin, C.; Wang, B.; Cheng, T.F.; Dai, L.; Wang, T. How Much We Know about Precipitation Climatology over Tianshan Mountains––the Central Asian Water Tower. Npj Clim. Atmos. Sci. 2024, 7, 21. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, P.; Deng, X.; Zhang, J.; Wang, Y.; Wang, S.; Yu, J.; Lai, X.; Long, A. Unveiling the Dynamics and Influence of Water Footprints in Arid Areas: A Case Study of Xinjiang, China. Water 2024, 16, 1164. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Deng, X.; Ren, C.; Deng, M.; Wang, S.; Lai, X.; Long, A. Study on the Spatial and Temporal Trends of Ecological Environment Quality and Influencing Factors in Xinjiang Oasis. Remote Sens. 2024, 16, 1980. [Google Scholar] [CrossRef]
- Li, X.; Zulkar, H.; Wang, D.; Zhao, T.; Xu, W. Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years. Land 2022, 11, 1688. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Huang, C. Vegetation Change and Its Response to Climate Extremes in the Arid Region of Northwest China. Remote Sens. 2021, 13, 1230. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Xing, Y.; Peng, H.; Wu, H.; Zhong, J. Ecological Construction Status of Photovoltaic Power Plants in China’s Deserts. Front. Environ. Sci. 2024, 12, 1406546. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, S.; Hou, S.; Xu, Z.; Lu, H. Normalized Difference Vegetation Index-based Assessment of Climate Change Impact on Vegetation Growth in the Humid-arid Transition Zone in Northern China during 1982–2013. Int. J. Climatol. 2019, 39, 5583–5598. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Zhang, Y.; Gao, B. NDVI-Based Greening of Alpine Steppe and Its Relationships with Climatic Change and Grazing Intensity in the Southwestern Tibetan Plateau. Land 2022, 11, 975. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Li, M.; Xiong, J.; Luo, Y.; Shi, Q.; Zhang, X.; Tie, Y.; Feng, Q. Changes of Surface Recovery at Coseismic Landslides and Their Driving Factors in the Wenchuan Earthquake-Affected Area. CATENA 2022, 210, 105871. [Google Scholar] [CrossRef]
- Yao, J.; Li, J.; Cao, Y.; Chen, M.; Zhang, C.; Mo, F.; Jia, G.; Chang, H.; Wu, J. Analysing the Influence of Surface Greening on Soil Conservation in China Using Satellite Remote Sensing. J. Hydrol. 2024, 636, 131253. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Z.; Wang, Z.; Zhang, W.; Wang, T.; Su, X.; Zeng, C.; Li, Z. Trade-Offs between Grain Supply and Soil Conservation in the Grain for Green Program under Changing Climate: A Case Study in the Three Gorges Reservoir Region. Sci. Total Environ. 2024, 945, 173786. [Google Scholar] [CrossRef] [PubMed]
- Shidong, L.; Moucheng, L. The Development Process, Current Situation and Prospects of the Conversion of Farmland to Forests and Grasses Project in China. J. Resour. Ecol. 2022, 13, 120–128. [Google Scholar] [CrossRef]
- Gao, W.; Yang, J.; Ren, S.; Hailong, L. The Trend of Soil Organic Carbon, Total Nitrogen, and Wheat and Maize Productivity under Different Long-Term Fertilizations in the Upland Fluvo-Aquic Soil of North China. Nutr. Cycl. Agroecosystems 2015, 103, 61–73. [Google Scholar] [CrossRef]
- Lian, J.; Zhao, X.; Li, X.; Zhang, T.; Wang, S.; Luo, Y.; Zhu, Y.; Feng, J. Detecting Sustainability of Desertification Reversion: Vegetation Trend Analysis in Part of the Agro-Pastoral Transitional Zone in Inner Mongolia, China. Sustainability 2017, 9, 211. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Zhang, Y.; Zhang, H.; Li, L. Vegetation Degradation and Its Driving Factors in the Farming–Pastoral Ecotone over the Countries along Belt and Road Initiative. Sustainability 2019, 11, 1590. [Google Scholar] [CrossRef]
- Cao, Q.; Wei, Y.; Li, W.; Feng, Y.; Abduraimov, O.S. The Distribution Characteristics of Vegetation in the Subrange of the Altai Mountains, Xinjiang. Plants 2023, 12, 3915. [Google Scholar] [CrossRef]
- Sang, W. Plant Diversity Patterns and Their Relationships with Soil and Climatic Factors along an Altitudinal Gradient in the Middle Tianshan Mountain Area, Xinjiang, China. Ecol. Res. 2009, 24, 303–314. [Google Scholar] [CrossRef]
- Pauli, H.; Halloy, S.R.P. High Mountain Ecosystems Under Climate Change. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Green, J.K.; Konings, A.G.; Alemohammad, S.H.; Berry, J.; Entekhabi, D.; Kolassa, J.; Lee, J.-E.; Gentine, P. Regionally Strong Feedbacks between the Atmosphere and Terrestrial Biosphere. Nat. Geosci. 2017, 10, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.-W. Global Relationships among Traditional Reflectance Vegetation Indices (NDVI and NDII), Evapotranspiration (ET), and Soil Moisture Variability on Weekly Timescales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef]
- Bao, A.; Huang, Y.; Ma, Y.; Guo, H.; Wang, Y. Assessing the Effect of EWDP on Vegetation Restoration by Remote Sensing in the Lower Reaches of Tarim River. Land 2017, 12, 693. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.; Li, Z.; Wang, Y. Changes in Land Use Pattern and Structure under the Rapid Urbanization of the Tarim River Basin. Land 2023, 12, 693. [Google Scholar] [CrossRef]
- von Oppen, J.; Jakob, J.A.; Anne, D.B.; Urs, A.T.; Bo, E.; Jacob, N.; Signe, N. Cross-scale Regulation of Seasonal Microclimate by Vegetation and Snow in the Arctic Tundra. Glob. Change Biol. 2022, 28, 7296–7312. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Pedersen, S.H.; Leffler, A.J.; Sexton, J.O.; Feng, M.; Welker, J.M. Winter Snow and Spring Temperature Have Differential Effects on Vegetation Phenology and Productivity across Arctic Plant Communities. Glob. Change Biol. 2021, 27, 1572–1586. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bevacqua, E.; Chen, C.; Wang, Z.; Chen, X.; Myneni, R.B.; Wu, X.; Xu, C.-Y.; Zhang, Z.; Zscheischler, J. Regional Asymmetry in the Response of Global Vegetation Growth to Springtime Compound Climate Events. Commun. Earth Environ. 2022, 3, 123. [Google Scholar] [CrossRef]
- An, H.; Zhang, X.; Ye, J. Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”. Sustainability 2024, 16, 3303. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Wang, K.; Ciais, P.; Tang, S.; Jin, L.; Li, L.; Piao, S. Responses of Vegetation Greenness and Carbon Cycle to Extreme Droughts in China. Agric. For. Meteorol. 2021, 298–299, 108307. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Yang, J.; Deng, Y. Time-Lag Effect of Vegetation Response to Volumetric Soil Water Content: A Case Study of Guangdong Province, Southern China. Remote Sens. 2022, 14, 1301. [Google Scholar] [CrossRef]
Category | Variable | Spatial Resolution | Resource |
---|---|---|---|
Vegetation | FVC | 250 m | MOD13Q1 NDVI |
Environmental conditions | |||
Terrain | Elevation | 1 arc-second | DEM (https://www.usgs.gov/; accessed on 22 July 2025) |
Slope | |||
Aspect | |||
Climate | Temperature | 1 km | https://cstr.cn/18406.11.Meteoro.tpdc.270961 (accessed on 22 July 2025) |
Precipitation | 1 km | ||
Soil | Soil water content | 1 km | https://cstr.cn/18406.11.RemoteSen.tpdc.272760 (accessed on 22 July 2025) |
Anthropogenic activities | |||
Land cover changes | Land cover | 300 m | https://www.esa-landcover-cci.org/(accessed on 22 July 2025) |
Land use intensity | Population | 1 km | https://landscan.ornl.gov/(accessed on 22 July 2025) |
Nitrogen fertilization | 5 km | https://cstr.cn/15732.11.nesdc.ecodb.pa.2022.13 (accessed on 22 July 2025) | |
Grazing index | 250 m | https://cstr.cn/15732.11.nesdc.ecodb.rs.2024.024 (accessed on 22 July 2025) |
Sen’s Slope (S) | Z | Classification |
---|---|---|
S > 0.005 | Z > 1.96 | Significant increase |
S > 0.005 | Z < 1.96 | Slight increase |
−0.005 < S < 0.005 | - | Stable |
S < −0.005 | Z < 1.96 | Slight decrease |
S < −0.005 | Z > 1.96 | Significant decrease |
Interaction Relationship | Interaction Types | Description |
---|---|---|
q(X1 ∩ X2) < Min(q(X1), q(X2)) | Weaken, nonlinear | The interaction of two variables nonlinearly weakens the impacts of a single variable. |
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) | Weaken, univariate | The interaction univariably weakens the impacts of single variables. |
q(X1 ∩ X2) > Max(q(X1), q(X2)) | Enhanced, bivariate | The interaction of two variables bivariable enhances the impacts of a single variable. |
q(X1 ∩ X2) = q(X1) + q(X2) | Independent | The impacts of the two variables are independent. |
q(X1 ∩ X2) > q(X1) + q(X2) | Enhance, nonlinear | The impacts of the variables are nonlinearly enhanced. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, X.; Cao, H.; Peng, Q.; Dong, Y.; Qi, Y.; Liu, J.; Lv, N.; Yin, F.; Yuan, X.; et al. Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China. Remote Sens. 2025, 17, 2634. https://doi.org/10.3390/rs17152634
Guo Y, Wang X, Cao H, Peng Q, Dong Y, Qi Y, Liu J, Lv N, Yin F, Yuan X, et al. Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China. Remote Sensing. 2025; 17(15):2634. https://doi.org/10.3390/rs17152634
Chicago/Turabian StyleGuo, Yu, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan, and et al. 2025. "Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China" Remote Sensing 17, no. 15: 2634. https://doi.org/10.3390/rs17152634
APA StyleGuo, Y., Wang, X., Cao, H., Peng, Q., Dong, Y., Qi, Y., Liu, J., Lv, N., Yin, F., Yuan, X., & Zeng, M. (2025). Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China. Remote Sensing, 17(15), 2634. https://doi.org/10.3390/rs17152634