Mapping Waterbird Habitats with UAV-Derived 2D Orthomosaic Along Belgium’s Lieve Canal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. UAV Data Collection
2.2.2. Waterbird Survey
2.3. Data Analysis
2.3.1. UAV Orthomosaic Generation
2.3.2. Habitat Classification
2.3.3. Waterbird Annotation from Orthomosaics
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. High-Resolution Habitat Classification Using UAV Orthomosaics
3.2. Waterbird Abundance Patterns Across Habitat Types
3.3. Validation of UAV-Based Waterbird Counts
3.3.1. Species-Specific Counting Performance
3.3.2. Effects of GSD on UAV-Based Counting Performance
4. Discussion
4.1. Ecological Insights into Waterbird Habitat Selection Based on UAV-Derived Habitat Mapping
4.2. Factors Influencing UAV Counting Performance
4.3. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forio, M.A.E.; Goethals, P.L.M. An Integrated Approach of Multi-Community Monitoring and Assessment of Aquatic Ecosystems to Support Sustainable Development. Sustainability 2020, 12, 5603. [Google Scholar] [CrossRef]
- Kim, W.; Woo, S.; Kim, Y.; Kim, S. Impact of Rapid Urbanization on Flow Regime and Ecosystem Services at Seasonal Scale: A Case Study in Water Conservation Area along the Gyeongan River, South Korea. Sci. Total Environ. 2025, 969, 178958. [Google Scholar] [CrossRef]
- Haase, P.; Bowler, D.E.; Baker, N.J.; Bonada, N.; Domisch, S.; Garcia Marquez, J.R.; Heino, J.; Hering, D.; Jähnig, S.C.; Schmidt-Kloiber, A.; et al. The Recovery of European Freshwater Biodiversity Has Come to a Halt. Nature 2023, 620, 582–588. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, W.; Chen, W.; Ma, Q.; Ma, Z. Function of Restored Wetlands for Waterbird Conservation in the Yellow Sea Coast. Sci. Total Environ. 2021, 756, 144061. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, Y.; Ma, J. Wetland Habitats Supporting Waterbird Diversity: Conservation Perspective on Biodiversity-Ecosystem Functioning Relationship. J. Environ. Manag. 2024, 357, 120663. [Google Scholar] [CrossRef]
- Alexander, N.; Dickinson, A.; Benson, T.J.; Ford, T.W.; Mateus-Pinilla, N.; Arneson, J.; Davis, M.A. Waterbird Disease in the United States Laurentian Great Lakes under Climate Change. J. Great Lakes Res. 2024, 50, 102450. [Google Scholar] [CrossRef]
- Lens, L.; Van Dongen, S.; Norris, K.; Githiru, M.; Matthysen, E. Avian Persistence in Fragmented Rainforest. Science 2002, 298, 1236–1238. [Google Scholar] [CrossRef]
- Frederick, P.C.; Towles, T.; Sawicki, R.J.; Bancroft, G.T. Comparison of Aerial and Ground Techniques for Discovery and Census of Wading Bird (Ciconiiformes) Nesting Colonies. Condor 1996, 98, 837–841. [Google Scholar] [CrossRef]
- Kushlan, J.A. Effects of Helicopter Censuses on Wading Bird Colonies. J. Wildl. Manag. 1979, 43, 756–760. [Google Scholar] [CrossRef]
- Colyn, R.B.; Anderson, T.A.; Anderson, M.D.; Retief, E.F.; Van der Westhuizen-Coetzer, E.J.; Smit-Robinson, H. The Use of Image Classification to Estimate Flamingo Abundance from Aerial, Drone and Satellite Imagery. Ostrich 2024, 95, 188–199. [Google Scholar] [CrossRef]
- Afán, I.; Máñez, M.; Díaz-Delgado, R. Drone Monitoring of Breeding Waterbird Populations: The Case of the Glossy Ibis. Drones 2018, 2, 42. [Google Scholar] [CrossRef]
- Scher, C.L.; Clark, J.S. Species Traits and Observer Behaviors That Bias Data Assimilation and How to Accommodate Them. Ecol. Appl. 2023, 33, e2815. [Google Scholar] [CrossRef]
- Kingsford, R.T. Aerial Survey of Waterbirds on Wetlands as a Measure of River and Floodplain Health. Freshw. Biol. 1999, 41, 425–438. [Google Scholar] [CrossRef]
- Francis, R.J.; Brandis, K.J. Assessment of Ground and Drone Surveys of Large Waterbird Breeding Rookeries: A Comparative Study. Drones 2024, 8, 135. [Google Scholar] [CrossRef]
- de Smet Willem, H.O.; Frans, M.J.C.E. A Hydrobiological Study of the Polluted River Lieve (Ghent, Belgium). Hydrobiologia 1972, 39, 91–154. [Google Scholar] [CrossRef]
- Liu, X.; Ho, L.; De Cock, A.; De Saeyer, N.; Pham, K.; Panique-Casso, D.; Forio, M.A.E.; Goethals, P.L.M. Water Quality and Its Influence on Waterbird Habitat Distribution: A Study Along the Lieve River, Belgium. Water 2025, 17, 595. [Google Scholar] [CrossRef]
- Dundas, S.J.; Vardanega, M.; O’Brien, P.; McLeod, S.R. Quantifying Waterfowl Numbers: Comparison of Drone and Ground-Based Survey Methods for Surveying Waterfowl on Artificial Waterbodies. Drones 2021, 5, 5. [Google Scholar] [CrossRef]
- Liu, X.; Ho, L.; Bruneel, S.; Goethals, P. Applications of Unmanned Vehicle Systems for Multi-Spatial Scale Monitoring and Management of Aquatic Ecosystems: A Review. Ecol. Inform. 2025, 85, 102926. [Google Scholar] [CrossRef]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned Aircraft Systems in Wildlife Research: Current and Future Applications of a Transformative Technology. Front. Ecol. Env. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Dedman, S.; Rosso, M.; Zhu, J.; Yang, J.; Xia, Y.; Tian, Y.; Zhang, G.; Wang, J. UAV Remote Sensing Applications in Marine Monitoring: Knowledge Visualization and Review. Sci. Total Environ. 2022, 838, 155939. [Google Scholar] [CrossRef]
- Rao, J.; Tang, Q.; Duan, D.; Xu, Y.; Wei, J.; Bao, Y.; He, X.; Collins, A.L. UAV-Based Modelling of Vegetation Recovery under Extreme Habitat Stresses in the Water Level Fluctuation Zone of the Three Gorges Reservoir, China. Sci. Total Environ. 2024, 934, 173185. [Google Scholar] [CrossRef]
- Pavlowsky, R.T.; Hess, J.W.; Martin, D.J.; Dogwiler, T.; Bendix, J. Large Wood Loads in Channels and on Floodplains after a 500-Year Flood Using UAV Imagery in Mark Twain National Forest, Ozark Highlands, Missouri. Geomorphology 2023, 431, 108672. [Google Scholar] [CrossRef]
- Bandini, F.; Jakobsen, J.; Olesen, D.; Reyna-Gutierrez, J.A.; Bauer-Gottwein, P. Measuring Water Level in Rivers and Lakes from Lightweight Unmanned Aerial Vehicles. J. Hydrol. 2017, 548, 237–250. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Chen, T.; Gu, X.; Zhang, L.; Li, X.; Tang, R.; He, Y.; Chen, G.; Zhang, B. Monitoring Water Quality Parameters of Freshwater Aquaculture Ponds Using UAV-Based Multispectral Images. Ecol. Indic. 2024, 167, 112644. [Google Scholar] [CrossRef]
- Bandini, F.; Sunding, T.P.; Linde, J.; Smith, O.; Jensen, I.K.; Köppl, C.J.; Butts, M.; Bauer-Gottwein, P. Unmanned Aerial System (UAS) Observations of Water Surface Elevation in a Small Stream: Comparison of Radar Altimetry, LIDAR and Photogrammetry Techniques. Remote Sens. Environ. 2020, 237, 111487. [Google Scholar] [CrossRef]
- Yang, S.; Francis, R.J.; Holding, M.; Kingsford, R.T. Aerial Photography and Machine Learning for Estimating Extremely High Flamingo Numbers on the Makgadikgadi Pans, Botswana. Glob. Ecol. Conserv. 2024, 53, e03011. [Google Scholar] [CrossRef]
- Wang, D.; Song, Q.; Liao, X.; Ye, H.; Shao, Q.; Fan, J.; Cong, N.; Xin, X.; Yue, H.; Zhang, H. Integrating Satellite and Unmanned Aircraft System (UAS) Imagery to Model Livestock Population Dynamics in the Longbao Wetland National Nature Reserve, China. Sci. Total Environ. 2020, 746, 140327. [Google Scholar] [CrossRef]
- Polensky, J.; Regenda, J.; Adamek, Z.; Cisar, P. Prospects for the Monitoring of the Great Cormorant (Phalacrocorax Carbo Sinensis) Using a Drone and Stationary Cameras. Ecol. Inform. 2022, 70, 101726. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision Wildlife Monitoring Using Unmanned Aerial Vehicles. Sci. Rep. 2016, 6, 22574. [Google Scholar] [CrossRef]
- Chen, A.; Jacob, M.; Shoshani, G.; Charter, M. Using Computer Vision, Image Analysis and UAVs for the Automatic Recognition and Counting of Common Cranes (Grus Grus). J. Environ. Manag. 2023, 328, 116948. [Google Scholar] [CrossRef]
- McMahon, C.A.; Roberts, D.A.; Stella, J.C.; Trugman, A.T.; Singer, M.B.; Caylor, K.K. A River Runs through It: Robust Automated Mapping of Riparian Woodlands and Land Surface Phenology across Dryland Regions. Remote Sens. Environ. 2024, 305, 114056. [Google Scholar] [CrossRef]
- Estrany, J.; Ruiz, M.; Calsamiglia, A.; Carriquí, M.; García-Comendador, J.; Nadal, M.; Fortesa, J.; López-Tarazón, J.A.; Medrano, H.; Gago, J. Sediment Connectivity Linked to Vegetation Using UAVs: High-Resolution Imagery for Ecosystem Management. Sci. Total Environ. 2019, 671, 1192–1205. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, X.; Chen, C.; Chen, M.; Li, C.; Lu, K.; Lin, H.; Fang, C. Digital Twin-Based Virtual Modeling of the Poyang Lake Wetland Landscapes. Environ. Model. Softw. 2024, 181, 106168. [Google Scholar] [CrossRef]
- Xie, S.; Wang, X.; Ren, Y.; Su, Z.; Su, Y.; Wang, S.; Zhou, W.; Lu, F.; Qian, Y.; Gong, C.; et al. Factors Responsible for Forest and Water Bird Distributions in Rivers and Lakes along an Urban Gradient in Beijing. Sci. Total Environ. 2020, 735, 139308. [Google Scholar] [CrossRef]
- Gent verkend The Lieve, the Oldest Canal in Europe. 2025. Available online: https://Gandante.Be/Product/de-Lieve-Het-Oudste-Kanaal-van-Europa/ (accessed on 10 January 2025).
- Devos, K.; Desmet, P.; Piesschaert, F.; T’Jollyn, F.; Brosens, D. Watervogels—Wintering Waterbirds in Flanders, Belgium. ZooKeys 2020, 915, 127–135. [Google Scholar] [CrossRef]
- Gelaude, F. De Lieve, de Realisatie van Een Opmerkelijk Kanaal in de 13e Eeuw. Een Illustratie van Stedelijke Machtsontplooiing Door Gent. Handel. Der Maatsch. Voor Geschied. En. Oudheidkd. Te Gent 2023, 73, 7–35. [Google Scholar] [CrossRef]
- Soorae, P.; Sakkir, S.; Saji, A.; Khan, S.B.; Zaabi, R.A.; Shah, J.N.; Ali, A.; Al Omari, K.; Al Dhaheri, A.; Javed, S.; et al. A Review of the Flora and Fauna in the Al Wathba Wetland Reserve in Abu Dhabi, United Arab Emirates. Wetlands 2020, 40, 1505–1512. [Google Scholar] [CrossRef]
- Fox, A.D.; Jørgensen, H.E.; Jeppesen, E.; Lauridsen, T.L.; Søndergaard, M.; Fugl, K.; Myssen, P.P.; Balsby, T.J.S.; Clausen, P.; Musil, P.; et al. Breeding Waterbird Species as Ecological Indicators of Shifts from Turbid to Clear Water Conditions in Northwest European Shallow Eutrophic Lakes. Hydrobiologia 2025, 852, 411–423. [Google Scholar] [CrossRef]
- Figarski, T.; Kajtoch, Ł. Alterations of Riverine Ecosystems Adversely Affect Bird Assemblages. Hydrobiologia 2015, 744, 287–296. [Google Scholar] [CrossRef]
- Dulsat-Masvidal, M.; Ciudad, C.; Infante, O.; Mateo, R.; Lacorte, S. Water Pollution Threats in Important Bird and Biodiversity Areas from Spain. J. Hazard. Mater. 2023, 448, 130938. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute. Impact Observatory; Microsoft Esri | Sentinel-2 Land Cover Explorer. Available online: https://livingatlas.arcgis.com/landcoverexplorer (accessed on 4 February 2025).
- Xie, T.; Li, J.; Yang, C.; Jiang, Z.; Chen, Y.; Guo, L.; Zhang, J. Crop Height Estimation Based on UAV Images: Methods, Errors, and Strategies. Comput. Electron. Agric. 2021, 185, 106155. [Google Scholar] [CrossRef]
- Nath Tripathi, R.; Ghazanfarullah Ghazi, M.; Badola, R.; Ainul Hussain, S. Feasibility Study of UAV Based Ecological Monitoring and Habitat Assessment of Cervids in the Floating Meadows of Keibul Lamjao National Park in Manipur, India. Measurement 2024, 229, 114411. [Google Scholar] [CrossRef]
- Maes, W.H. Practical Guidelines for Performing UAV Mapping Flights with Snapshot Sensors. Remote Sens. 2025, 17, 606. [Google Scholar] [CrossRef]
- Elkhrachy, I. Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alex. Eng. J. 2021, 60, 5579–5590. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Conway, C.J. Standardized North American Marsh Bird Monitoring Protocol. Waterbirds 2011, 34, 319–346. [Google Scholar] [CrossRef]
- Sauer, J.R.; Pardieck, K.L.; Ziolkowski, D.J., Jr.; Smith, A.C.; Hudson, M.-A.R.; Rodriguez, V.; Berlanga, H.; Niven, D.K.; Link, W.A. The First 50 Years of the North American Breeding Bird Survey. Condor Ornithol. Appl. 2017, 119, 576–593. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Ai, G.; Zhang, Y.; Zuo, Y. Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. ISPRS Int. J. Geo-Inf. 2018, 7, 333. [Google Scholar] [CrossRef]
- Pei, H.; Wan, P.; Li, C.; Feng, H.; Yang, G.; Xu, B.; Niu, Q. Accuracy Analysis of UAV Remote Sensing Imagery Mosaicking Based on Structure-from-Motion. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5904–5907. [Google Scholar]
- Zhang, J.; Xu, S.; Zhao, Y.; Sun, J.; Xu, S.; Zhang, X. Aerial Orthoimage Generation for UAV Remote Sensing: Review. Inf. Fusion 2023, 89, 91–120. [Google Scholar] [CrossRef]
- Suh, J.W.; Ouimet, W. Generation of High-Resolution Orthomosaics from Historical Aerial Photographs Using Structure-from-Motion and Lidar Data. Photogramm. Eng. Remote Sens. 2023, 89, 37–46. [Google Scholar] [CrossRef]
- Giannetti, F.; Chirici, G.; Gobakken, T.; Næsset, E.; Travaglini, D.; Puliti, S. A New Approach with DTM-Independent Metrics for Forest Growing Stock Prediction Using UAV Photogrammetric Data. Remote Sens. Environ. 2018, 213, 195–205. [Google Scholar] [CrossRef]
- Sanz-Ablanedo, E.; Chandler, J.H.; Ballesteros-Pérez, P.; Rodríguez-Pérez, J.R. Reducing Systematic Dome Errors in Digital Elevation Models through Better UAV Flight Design. Earth Surf. Process. Landf. 2020, 45, 2134–2147. [Google Scholar] [CrossRef]
- Varshosaz, M.; Sajadian, M.; Pirasteh, S.; Moghimi, A. Automated Two-Step Seamline Detection for Generating Large-Scale Orthophoto Mosaics from Drone Images. Remote Sens. 2024, 16, 903. [Google Scholar] [CrossRef]
- Xian, Z.J.; Jian, L.Z.; Hong, Z.Y.; Li, M.W. Remote Sensing Orthophotoquad Generation without Employing DEM. J. Remote Sens. 2000, 202–207. [Google Scholar] [CrossRef]
- Chiu, T.-P.; Wang, S.-F. Influence of DEM Resolution on Topographic Correction Models Using Spot Satellite Image. Satell. Oceanogr. Meteorol. 2018, 3. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, G.; Bai, Y. Sensitivity of Topographic Correction to the DEM Spatial Scale. IEEE Geosci. Remote Sens. Lett. 2015, 12, 53–57. [Google Scholar] [CrossRef]
- Muji, A.L.; Tahar, K.N. Assessment of Digital Elevation Model (DEM) Using Onboard GPS and Ground Control Points in UAV Image Processing. In Proceedings of the 2017 Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 835–842. [Google Scholar]
- Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring. Remote Sens. 2019, 11, 758. [Google Scholar] [CrossRef]
- Gao, G.; Yuan, M.; Ma, Z.; Gu, J.; Meng, W.; Xu, S.; Zhang, X. GeoROS: Georeferenced Real-Time Orthophoto Stitching with Unmanned Aerial Vehicle. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 2250–2256. [Google Scholar]
- Lin, Y.-C.; Zhou, T.; Wang, T.; Crawford, M.; Habib, A. New Orthophoto Generation Strategies from UAV and Ground Remote Sensing Platforms for High-Throughput Phenotyping. Remote Sens. 2021, 13, 860. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Zhao, Y.S.; Liu, C.; Ma, X.; Wu, X. Overall Quality Control of 1:10000 Orthophoto Products in the Third National Land Survey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLII-3-W10, 1301–1305. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Stamati, C.; Topouzelis, K. Comparison of True-Color and Multispectral Unmanned Aerial Systems Imagery for Marine Habitat Mapping Using Object-Based Image Analysis. Remote Sens. 2020, 12, 554. [Google Scholar] [CrossRef]
- Ivošević, B.; Pajević, N.; Brdar, S.; Waqar, R.; Khan, M.; Valente, J. Comprehensive Dataset from High Resolution UAV Land Cover Mapping of Diverse Natural Environments in Serbia. Sci. Data 2025, 12, 66. [Google Scholar] [CrossRef]
- Belcore, E.; Piras, M.; Pezzoli, A. Land Cover Classification from Very High-Resolution UAS Data for Flood Risk Mapping. Sensors 2022, 22, 5622. [Google Scholar] [CrossRef]
- Msofe, N.K.; Sheng, L.; Li, Z.; Lyimo, J. Impact of Land Use/Cover Change on Ecosystem Service Values in the Kilombero Valley Floodplain, Southeastern Tanzania. Forests 2020, 11, 109. [Google Scholar] [CrossRef]
- Espriella, M.C.; Lecours, V. Optimizing the Scale of Observation for Intertidal Habitat Classification through Multiscale Analysis. Drones 2022, 6, 140. [Google Scholar] [CrossRef]
- Strumia, S.; Buonanno, M.; Aronne, G.; Santo, A.; Santangelo, A. Monitoring of Plant Species and Communities on Coastal Cliffs: Is the Use of Unmanned Aerial Vehicles Suitable? Diversity 2020, 12, 149. [Google Scholar] [CrossRef]
- Sviridov, V.V.; Kotsuk, D.V.; Podorozhnyuk, E.V. Unmanned photogrammetric monitoring of Pacific salmon using consumer-grade UAVs. Izvestiya TINRO 2022, 202, 429–449. [Google Scholar] [CrossRef]
- Cruz, M.; González-Villa, J.; Lefebvre, J.; Gilliland, S.; St-Pierre, F.; English, M.; Lepage, C. Eastern Canada Flocks: Images and Manually Annotated Bird Positions. Ecology 2021, 102, e03444. [Google Scholar] [CrossRef]
- Jo, T.S. Pooling of Intra-Site Measurements Inflates Variability of the Correlation between Environmental DNA Concentration and Organism Abundance. Env. Monit. Assess. 2023, 195, 936. [Google Scholar] [CrossRef]
- Perret, J.; Charpentier, A.; Pradel, R.; Papuga, G.; Besnard, A. Spatially Balanced Sampling Methods Are Always More Precise than Random Ones for Estimating the Size of Aggregated Populations. Methods Ecol. Evol. 2022, 13, 2743–2756. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of Photogrammetric Mapping Accuracy Based on Variation Ground Control Points Number Using Unmanned Aerial Vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Padró, J.-C.; Muñoz, F.-J.; Planas, J.; Pons, X. Comparison of Four UAV Georeferencing Methods for Environmental Monitoring Purposes Focusing on the Combined Use with Airborne and Satellite Remote Sensing Platforms. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 130–140. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Abdulrahman, F.; Kattan, R.; Gilyana, S. A Comparison between Unmanned Aerial Vehicle And Aerial Survey Acquired in Separate Dates for The Production of Orthophotos. J. Duhok Univ. 2020, 23, 52–66. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- Akpınar, B. Performance of UAV-Based Digital Orthophoto Generation for Emergency Response Applications. TEM J. 2021, 10, 1721–1727. [Google Scholar] [CrossRef]
- Senkal, E.; Kaplan, G.; Avdan, U. Accuracy Assessment of Digital Surface Models from Unmanned Aerial Vehicles’ Imagery on Archaeological Sites. Int. J. Eng. Geosci. 2021, 6, 81–89. [Google Scholar] [CrossRef]
- Belloni, V.; Di Rita, M.; Fugazza, D.; Traversa, G.; Hanson, K.; Diolaiuti, G.; Crespi, M. High-Resolution High-Accuracy Orthophoto Map and Digital Surface Model of Forni Glacier Tongue (Central Italian Alps) from UAV Photogrammetry. J. Maps 2023, 19, 2217508. [Google Scholar] [CrossRef]
- Francis, R.J.; Kingsford, R.T.; Brandis, K.J. Using Drones and Citizen Science Counts to Track Colonial Waterbird Breeding, an Indicator for Ecosystem Health on the Chobe River, Botswana. Glob. Ecol. Conserv. 2022, 38, e02231. [Google Scholar] [CrossRef]
- Loncarich, F.L.; Krementz, D.G. External Determination of Age and Sex of the Common Moorhen. Wildl. Soc. Bull. 2004, 32, 655–660. [Google Scholar] [CrossRef]
- Minias, P. Sex Determination of Adult Eurasian Coots (Fulica Atra) by Morphometric Measurements. Waterbirds 2015, 38, 191–194. [Google Scholar] [CrossRef]
- Pikus, E.; Dunn, P.O.; Minias, P. High MHC Diversity Confers No Advantage for Phenotypic Quality and Reproductive Performance in a Wild Bird. J. Anim. Ecol. 2022, 91, 1707–1718. [Google Scholar] [CrossRef]
- International, B. Species Factsheet: Fulica Atra (Eurasian Coot). 2023. Available online: https://datazone.birdlife.org/species/factsheet/eurasian-coot-fulica-atra (accessed on 10 January 2025).
- International, B. Species Factsheet: Gallinula Chloropus (Common Moorhen). 2023. Available online: https://datazone.birdlife.org/species/factsheet/common-moorhen-gallinula-chloropus (accessed on 10 January 2025).
- Dunning, J.B., Jr. CRC Handbook of Avian Body Masses, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429149825. [Google Scholar]
- Kear, J. Ducks, Geese and Swans, Volume 1; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Livezey, B.C. Phylogenetic Analysis and Classification of Modern Ducks (Anatini) Based on Comparative Morphology. Auk 1995, 112, 255–305. [Google Scholar]
- International, B. Species Factsheet: Anas Platyrhynchos (Mallard). 2023. Available online: https://datazone.birdlife.org/species/factsheet/mallard-anas-platyrhynchos (accessed on 15 January 2025).
- Weimerskirch, H.; Prudor, A.; Schull, Q. Flights of Drones over Sub-Antarctic Seabirds Show Species- and Status-Specific Behavioural and Physiological Responses. Polar Biol. 2018, 41, 259–266. [Google Scholar] [CrossRef]
- Rush, G.P.; Clarke, L.E.; Stone, M.; Wood, M.J. Can Drones Count Gulls? Minimal Disturbance and Semiautomated Image Processing with an Unmanned Aerial Vehicle for Colony-Nesting Seabirds. Ecol. Evol. 2018, 8, 12322–12334. [Google Scholar] [CrossRef]
- Brisson-Curadeau, É.; Bird, D.; Burke, C.; Fifield, D.A.; Pace, P.; Sherley, R.B.; Elliott, K.H. Seabird Species Vary in Behavioural Response to Drone Census. Sci. Rep. 2017, 7, 17884. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Gonçalves, L.M.S.; Sobral, P.; Bessa, F. Beach Litter Survey by Drones: Mini-Review and Discussion of a Potential Standardization. Environ. Pollut. 2022, 315, 120370. [Google Scholar] [CrossRef]
- Bergamo, T.F.; de Lima, R.S.; Kull, T.; Ward, R.D.; Sepp, K.; Villoslada, M. From UAV to PlanetScope: Upscaling Fractional Cover of an Invasive Species Rosa Rugosa. J. Environ. Manag. 2023, 336, 117693. [Google Scholar] [CrossRef]
- Malabad, A.M.; Tatin-Froux, F.; Gallinet, G.; Colin, J.-M.; Chalot, M.; Parelle, J. A Combined Approach Utilizing UAV 3D Imaging Methods, in-Situ Measurements, and Laboratory Experiments to Assess Water Evaporation and Trace Element Uptake by Tree Species Growing in a Red Gypsum Landfill. J. Hazard. Mater. 2022, 425, 127977. [Google Scholar] [CrossRef]
- Ingalls, T.C.; Li, J.; Sawall, Y.; Martin, R.E.; Thompson, D.R.; Asner, G.P. Imaging Spectroscopy Investigations in Wet Carbon Ecosystems: A Review of the Literature from 1995 to 2022 and Future Directions. Remote Sens. Environ. 2024, 305, 114051. [Google Scholar] [CrossRef]
- Wang, C.; Pavelsky, T.M.; Kyzivat, E.D.; Garcia-Tigreros, F.; Podest, E.; Yao, F.; Yang, X.; Zhang, S.; Song, C.; Langhorst, T.; et al. Quantification of Wetland Vegetation Communities Features with Airborne AVIRIS-NG, UAVSAR, and UAV LiDAR Data in Peace-Athabasca Delta. Remote Sens. Environ. 2023, 294, 113646. [Google Scholar] [CrossRef]
- Amarasingam, N.; Ashan Salgadoe, A.S.; Powell, K.; Gonzalez, L.F.; Natarajan, S. A Review of UAV Platforms, Sensors, and Applications for Monitoring of Sugarcane Crops. Remote Sens. Appl. Soc. Environ. 2022, 26, 100712. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable Identification and Mapping of Trees Using UAV RGB Image and Deep Learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef]
- Di Tommaso, A.; Betti, A.; Fontanelli, G.; Michelozzi, B. A Multi-Stage Model Based on YOLOv3 for Defect Detection in PV Panels Based on IR and Visible Imaging by Unmanned Aerial Vehicle. Renew. Energy 2022, 193, 941–962. [Google Scholar] [CrossRef]
Species | Feature | Feature Description | Reference |
---|---|---|---|
Coot | White frontal shield | Width: 1.5–3.1 cm | [85,86,87] |
Moorhen | Red frontal shield | Width: 1.0–1.5 cm in adults; 0.4–1.0 cm in juveniles | [84,88] |
Duck | Dark, iridescent-green head; white-bordered blue speculum | Head width: 3.5 cm; Speculum occupying: 1/3–1/2 of folded wing surface | [89,90,91,92] |
GSD (cm/pixel) | Coot (%) | Moorhen (%) | Duck (%) | Total (%) |
---|---|---|---|---|
0.54 | 100.00 | 80.56 | 28.33 | 80.56 |
0.67 | 79.17 | 38.97 | 82.69 | 66.16 |
0.94 | 60.00 | 16.67 | 100.00 | 37.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; De Cock, A.; Ho, L.; Pham, K.; Panique-Casso, D.; Forio, M.A.E.; Maes, W.H.; Goethals, P.L.M. Mapping Waterbird Habitats with UAV-Derived 2D Orthomosaic Along Belgium’s Lieve Canal. Remote Sens. 2025, 17, 2602. https://doi.org/10.3390/rs17152602
Liu X, De Cock A, Ho L, Pham K, Panique-Casso D, Forio MAE, Maes WH, Goethals PLM. Mapping Waterbird Habitats with UAV-Derived 2D Orthomosaic Along Belgium’s Lieve Canal. Remote Sensing. 2025; 17(15):2602. https://doi.org/10.3390/rs17152602
Chicago/Turabian StyleLiu, Xingzhen, Andrée De Cock, Long Ho, Kim Pham, Diego Panique-Casso, Marie Anne Eurie Forio, Wouter H. Maes, and Peter L. M. Goethals. 2025. "Mapping Waterbird Habitats with UAV-Derived 2D Orthomosaic Along Belgium’s Lieve Canal" Remote Sensing 17, no. 15: 2602. https://doi.org/10.3390/rs17152602
APA StyleLiu, X., De Cock, A., Ho, L., Pham, K., Panique-Casso, D., Forio, M. A. E., Maes, W. H., & Goethals, P. L. M. (2025). Mapping Waterbird Habitats with UAV-Derived 2D Orthomosaic Along Belgium’s Lieve Canal. Remote Sensing, 17(15), 2602. https://doi.org/10.3390/rs17152602