Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sea Surface Temperature
2.1.2. Sea Surface Wind
2.1.3. Air–Sea Heat Flux and Sea Level Pressure
2.1.4. Ocean Currents
2.2. Methods
2.2.1. Upwelling Index (UISST)
2.2.2. Horizontal Heat Transport
2.2.3. Wind Stress and Wind Stress Curl
3. Results
3.1. The Long-Term Trend of Oman Upwelling
3.2. Possible Mechanisms for the Intensification of Oman Upwelling
3.2.1. Sea Surface WS and Its Curl
3.2.2. Air–Sea Heat Flux
3.2.3. Oceanic Horizontal Heat Advection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lachkar, Z.; Gruber, N. Response of Biological Production and Air-Sea CO2 Fluxes to Upwelling Intensification in the California and Canary Current Systems. J. Mar. Syst. 2013, 247, 109–110. [Google Scholar] [CrossRef]
- Bakun, A. Global Climate Change and Intensification of Coastal Ocean Upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef]
- Di Lorenzo, E. The Future of Coastal Ocean Upwelling. Nature 2015, 518, 310–311. [Google Scholar] [CrossRef]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate Change and Wind Intensification in Coastal Upwelling Ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef]
- Varela, R.; Álvarez, I.; Santos, F.; DeCastro, M.; Gómez-Gesteira, M. Has Upwelling Strengthened along Worldwide Coasts over 1982–2010? Sci. Rep. 2015, 5, 10016. [Google Scholar] [CrossRef]
- García-Reyes, M.; Largier, J. Observations of Increased Wind-Driven Coastal Upwelling off Central California. J. Geophys. Res. Ocean. 2010, 115, C04011. [Google Scholar] [CrossRef]
- Barton, E.D.; Field, D.B.; Roy, C. Canary Current Upwelling: More or Less? Prog. Oceanogr. 2013, 116, 167–178. [Google Scholar] [CrossRef]
- Bakun, A.; Black, B.A.; Bograd, S.J.; García-Reyes, M.; Miller, A.J.; Rykaczewski, R.R.; Sydeman, W.J. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Change Rep. 2015, 1, 85–93. [Google Scholar] [CrossRef]
- Le, P.T.D.; Fischer, A.M. Trends and Patterns of SST and Associated Frontal Frequency in the Vietnamese Upwelling Center. J. Mar. Syst. 2021, 222, 103600. [Google Scholar] [CrossRef]
- Sousa, M.C.; Alvarez, I.; deCastro, M.; Gomez-Gesteira, M.; Dias, J.M. Seasonality of Coastal Upwelling Trends under Future Warming Scenarios along the Southern Limit of the Canary Upwelling System. Prog. Oceanogr. 2017, 153, 16–23. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian Subcontinent by Rapid Indian Ocean Warming and a Weakening Land-Sea Thermal Gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef]
- Mishra, A.K.; Dwivedi, S.; Das, S. Role of Arabian Sea Warming on the Indian Summer Monsoon Rainfall in a Regional Climate Model. Int. J. Climatol. 2020, 40, 2226–2238. [Google Scholar] [CrossRef]
- Izumo, T.; Montegut, C.D.B.; Luo, J.J.; Behera, S.K.; Masson, S.; Yamagata, T. The Role of the Western Arabian Sea Upwelling in Indian Monsoon Rainfall Variability. J. Clim. 2008, 21, 5603–5623. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, Y.; Lin, X.; Ni, X.; Wang, L.; Li, H.; Jing, C. Dissolved Oxygen Recovery in the Oxygen Minimum Zone of the Arabian Sea in Recent Decade as Observed by BGC-Argo Floats. Geophys. Res. Lett. 2024, 51, e2024GL108841. [Google Scholar] [CrossRef]
- Xie, L.L.; Zong, X.L.; Yi, X.F.; Li, M. The Interannual Variation and Long-Term Trend of Qiongdong Upwelling. Oceanol. Limnol. Sin. 2016, 47, 43–51. [Google Scholar] [CrossRef]
- DeCastro, M.; Sousa, M.C.; Santos, F.; Dias, J.M.; Gómez-Gesteira, M. How Will Somali Coastal Upwelling Evolve under Future Warming Scenarios? Sci. Rep. 2016, 6, 30137. [Google Scholar] [CrossRef]
- Praveen, V.; Ajayamohan, R.S.; Valsala, V.; Sandeep, S. Intensification of Upwelling along Oman Coast in a Warming Scenario. Geophys. Res. Lett. 2016, 43, 7581–7589. [Google Scholar] [CrossRef]
- Gan, J.; Cheung, A.; Guo, X.; Li, L. Intensified Upwelling over a Widened Shelf in the Northeastern South China Sea. J. Geophys. Res. Ocean. 2009, 114, C09019. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhao, Q.; Wang, Y.; Zhang, Y.J. Long-Term Variation of Upwelling at the Tip of Liaodong Peninsula: Features and Factors. Oceanol. Limnol. Sin. 2020, 51, 31–39. [Google Scholar] [CrossRef]
- Schott, F.A.; McCreary, J.P. The Monsoon Circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Elliott, A.J.; Savidge, G. Some Features of the Upwelling off Oman. J. Mar. Res. 2008, 48, 319–333. [Google Scholar] [CrossRef]
- Liao, X.; Zhan, H.; Wei, X. Low-Frequency Variations in Primary Production in the Oman Upwelling Zone Associated with Monsoon Winds. Chin. J. Oceanol. Limnol. 2012, 30, 1045–1053. [Google Scholar] [CrossRef]
- Findlater, J. Observational Aspects of the Low-Level Cross-Equatorial Jet Stream of the Western Indian Ocean. Pure Appl. Geophys. 1977, 115, 1251–1262. [Google Scholar] [CrossRef]
- McCreary, J.P.; Kundu, P.K.; Molinari, R.L. A Numerical Investigation of Dynamics, Thermodynamics and Mixed-Layer Processes in the Indian Ocean. Prog. Oceanogr. 1993, 31, 181–244. [Google Scholar] [CrossRef]
- Lee, C.M.; Jones, B.H.; Brink, K.H.; Fischer, A.S. The Upper-Ocean Response to Monsoonal Forcing in the Arabian Sea: Seasonal and Spatial Variability. Deep. Sea Res. Part II Top. Stud. in Oceanogr. 2000, 47, 1177–1226. [Google Scholar] [CrossRef]
- Chatterjee, A.; Kumar, B.P.; Prakash, S.; Singh, P. Annihilation of the Somali Upwelling System during Summer Monsoon. Sci. Rep. 2019, 9, 7598. [Google Scholar] [CrossRef]
- Vic, C.; Capet, X.; Roullet, G.; Carton, X. Western Boundary Upwelling Dynamics off Oman. Ocean Dyn. 2017, 67, 585–595. [Google Scholar] [CrossRef]
- Ganguly, D.; Suryanarayana, K.; Raman, M. Spatio-Temporal Variations in Upwelling Indices in Arabian Sea Coastal Upwelling Systems and Associated Biological Productivity Using Remote Sensing Observations. J. Oper. Oceanogr. 2023, 17, 63–76. [Google Scholar] [CrossRef]
- Nigam, T.; Pant, V. Interannual Variability of Coastal Upwelling Features along the Eastern and Western Margins of the Arabian Sea. J. Oper. Oceanogr. 2024, 17, 77–92. [Google Scholar] [CrossRef]
- Jayaram, C.; Jose, F. Relative Dominance of Wind Stress Curl and Ekman Transport on Coastal Upwelling during Summer Monsoon in the Southeastern Arabian Sea. Cont. Shelf Res. 2022, 244, 104782. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, Y.; Hu, J.; Aung, C.; Lin, X.; Jing, C.; Zhang, J. The Strong Upwelling Event off the Southern Coast of Sri Lanka in 2013 and Its Relationship with Indian Ocean Dipole Events. J. Clim. 2021, 34, 3555–3569. [Google Scholar] [CrossRef]
- Varela, R.; Lima, F.P.; Seabra, R.; Meneghesso, C.; Gómez-Gesteira, M. Coastal Warming and Wind-Driven Upwelling: A Global Analysis. Sci. Total Environ. 2018, 639, 1501–1511. [Google Scholar] [CrossRef]
- Watanabe, T.K.; Watanabe, T.; Pfeiffer, M.; Hu, H.M.; Shen, C.C.; Yamazaki, A. Corals Reveal an Unprecedented Decrease of Arabian Sea Upwelling During the Current Warming Era. Geophys. Res. Lett. 2021, 48, e2021GL092432. [Google Scholar] [CrossRef]
- Ajith Joseph, K.; Jayaram, C.; Nair, A.; George, M.S.; Balchand, A.N.; Pettersson, L.H. Remote Sensing of Upwelling in the Arabian Sea and Adjacent Near-Coastal Regions. In Remote Sensing of the Asian Seas; Springer International Publishing: Cham, Switzerland, 2019; pp. 467–483. ISBN 9783319940670. [Google Scholar] [CrossRef]
- Lahiri, S.P.; Vissa, N.K. Assessment of Indian Ocean Upwelling Changes and Its Relationship with the Indian Monsoon. Glob. Planet. Change 2022, 208, 103729. [Google Scholar] [CrossRef]
- Yu, L.; Weller, R.A. Objectively Analyzed Air-Sea Heat Fluxes for the Global Ice- Free Oceans (1981–2005). Bull. Am. Meteorol. Soc. 2007, 88, 527–539. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.P.; Evans, R. Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder Algorithm for Sea Surface Temperature and Associated Matchup Database. J. Geophys. Res. Ocean. 2001, 106, 9179–9197. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-Calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Soci, C.; Hersbach, H.; Simmons, A.; Poli, P.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; et al. The ERA5 Global Reanalysis from 1940 to 2022. Q. J. R. Meteorol. Soc. 2024, 99, 4014–4048. [Google Scholar] [CrossRef]
- Nykjaer, L.; Van Camp, L. Seasonal and Interannual Variability of Coastal Upwelling along Northwest Africa and Portugal from 1981 to 1991. J. Geophys. Res. 1994, 99, 197–207. [Google Scholar] [CrossRef]
- Jayaram, C.; Chacko, N.; Joseph, A.A.; Balchand, A.N. Interannual Variability of Upwelling Indices in the Southeastern Arabian Sea: A Satellite Based Study. Ocean Sci. J. 2010, 45, 27–40. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, J.; Guo, X.; Mao, X.; Yao, P.; Zhao, B.; Chen, L.; Wang, Y. Yearly Variations in Nutrient Supply in the East China Sea Due To the Zhejiang Coastal Upwelling and Kuroshio Intrusion. J. Geophys. Res. Ocean. 2023, 128, e2022JC019216. [Google Scholar] [CrossRef]
- Fang, G.; Susanto, R.D.; Wirasantosa, S.; Qiao, F.; Supangat, A.; Fan, B.; Wei, Z.; Sulistiyo, B.; Li, S. Volume, Heat, and Freshwater Transports from the South China Sea to Indonesian Seas in the Boreal Winter of 2007–2008. J. Geophys. Res. Ocean. 2010, 115, C12020. [Google Scholar] [CrossRef]
- Yelland, M.J.; Moat, B.I.; Taylor, P.K.; Pascal, R.W.; Hutchings, J.; Cornell, V.C. Wind Stress Measurements from the Open Ocean Corrected for Airflow Distortion by the Ship. J. Phys. Oceanogr. 1998, 28, 1511–1526. [Google Scholar] [CrossRef]
- Varela, R.; Santos, F.; Gómez-Gesteira, M.; Álvarez, I.; Costoya, X.; Días, J.M. Influence of Coastal Upwelling on SST Trends along the South Coast of Java. PLoS ONE 2016, 11, e0162122. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Du, Y. Upwelling in the Continental Shelf of Northern South China Sea Associated with 1997–1998 El Nio. J. Geophys. Res. Ocean. 2011, 116, C02033. [Google Scholar] [CrossRef]
- Seroka, G.; Fredj, E.; Kohut, J.; Dunk, R.; Miles, T.; Glenn, S. Sea Breeze Sensitivity to Coastal Upwelling and Synoptic Flow Using Lagrangian Methods. J. Geophys. Res. Atmos. 2018, 123, 9443–9461. [Google Scholar] [CrossRef]
- Alory, G.; Vega, A.; Ganachaud, A.; Despinoy, M. Influence of Upwelling, Subsurface Stratification, and Heat Fluxes on Coastal Sea Surface Temperature off Southwestern New Caledonia. J. Geophys. Res. Ocean. 2006, 111, C07023. [Google Scholar] [CrossRef]
- Gruber, N.; Lachkar, Z.; Frenzel, H.; Marchesiello, P.; Münnich, M.; McWilliams, J.C.; Nagai, T.; Plattner, G.K. Eddy-Induced Reduction of Biological Production in Eastern Boundary Upwelling Systems. Nat. Geosci. 2011, 4, 787–792. [Google Scholar] [CrossRef]
- Chiswell, S.M.; Schiel, D.R. Influence of Along-Shore Advection and Upwelling on Coastal Temperature at Kaikoura Peninsula, New Zealand. New Zealand J. Mar. Freshw. Res. 2001, 35, 307–317. [Google Scholar] [CrossRef]
- He, Z.; Wu, R.; Wang, W.; Wen, Z.; Wang, D. Contributions of Surface Heat Fluxes and Oceanic Processes to Tropical SST Changes: Seasonal and Regional Dependence. J. Clim. 2017, 30, 4185–4205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Qiu, Y.; Xu, J.; Jing, C.; Cai, S.; Gao, L. Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018. Remote Sens. 2025, 17, 2600. https://doi.org/10.3390/rs17152600
Zhou X, Qiu Y, Xu J, Jing C, Cai S, Gao L. Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018. Remote Sensing. 2025; 17(15):2600. https://doi.org/10.3390/rs17152600
Chicago/Turabian StyleZhou, Xiwu, Yun Qiu, Jindian Xu, Chunsheng Jing, Shangzhan Cai, and Lu Gao. 2025. "Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018" Remote Sensing 17, no. 15: 2600. https://doi.org/10.3390/rs17152600
APA StyleZhou, X., Qiu, Y., Xu, J., Jing, C., Cai, S., & Gao, L. (2025). Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018. Remote Sensing, 17(15), 2600. https://doi.org/10.3390/rs17152600