Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery
Abstract
1. Introduction
- (I)
- First, pyrite oxidation occurs through the interaction of iron sulphide with oxygen and water, producing ferrous iron (Fe2+), sulphate (SO42−), and hydrogen ions (H+).
- (II)
- Second, the ferrous iron (Fe2+) is oxidised to ferric iron (Fe3+) by dissolved oxygen, generating additional hydrogen ions and increasing solution acidity. Ferric iron (Fe3+) further oxidises sulphide minerals, increasing sulphate and acid production.
- (III)
- Third, ferric iron (Fe3+) hydrolyses in water, forming ferric hydroxide (Fe(OH)3) and releasing more hydrogen ions. This hydrolysis helps remove other metals from the solution, leading to precipitation of secondary mineral [9].
2. Study Area
2.1. Geological Context
2.2. Studied Basins
3. Materials and Method
3.1. Material
3.1.1. Image Datasets
3.1.2. Sample Collection
3.2. Analysis
3.2.1. Spectral Analysis
Iron Oxides and Hydroxides
Gypsum
Aluminium-Bearing Clays
3.2.2. Validation
4. Results
4.1. Cross-Sensor Comparison
4.2. Iron Oxides and Hydroxides
4.3. Gypsum
4.4. Aluminium-Bearing Clays
4.5. Data Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample ID | Latitude (UTM) | Longitude (UTM) | XRD A | PRISMA B October 2023 | Laboratory Spectra C |
---|---|---|---|---|---|
SM-001 | 692622 | 4170952 | Qrtz, Ha, Kln, Gpsm, Jrs, (Gth) | Jrs, Gpsm, Al-clays | Jrs, Gpsm, Al-clays |
SM-002 | 692653 | 4170791 | Qrtz, Gpsm, Jrs, (Gth) | Gth, Gpsm | Gth, Gpsm |
SM-003 | 692770 | 4170765 | Qrtz, Ha, Ilt, Kln, Jrs, (Gth) | Jrs, Gpsm, Al-clays | Jrs, Gpsm, Al-clays |
SM-004 | 692063 | 4170197 | Qrtz, Clct, Kln, (Ilt) (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-005 | 691311 | 4169486 | Qrtz, Clct, Kln, (Ilt) (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-006 | 691749 | 4169460 | Qrtz, Gpsm, Jrs, Gth, (Ilt) | Jrs, Gpsm | Jrs, Gpsm, Al-clays |
SM-007 | 692499 | 4170225 | Qrtz, Gpsm, Jrs, (Ilt) | Jrs, Gpsm | Jrs, Gpsm, Al-clays |
SM-008 | 690642 | 4167014 | Kln, Qrtz, Jrs, Gpsm, (Ilt) | Jrs, Gpsm | Jrs, Gpsm, Al-clays |
SM-009 | 690671 | 4166309 | Qrtz, Dlmt, Cal, Gpsm, Jrs, (Ilt) | Jrs, Gpsm | Jrs, Gpsm, Al-clays |
SM-012 | 691280 | 4169469 | Qrtz, Clct, Kln, (Ilt) (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-016 | 686034 | 4165850 | Qrtz, Clct, Kln, Ilt (Al) | Al-clays | Al-clays |
SM-017 | 686821 | 4173970 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-018 | 687022 | 4173314 | Qrtz, Clct, Kln, Ilt | Al-clays | |
SM-019 | 687234 | 4172652 | Qrtz, Clct, Ilt, (Kln), (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-020 | 688393 | 4173901 | Qrtz, Clct, Ilt, (Kln) | Al-clays | Al-clays |
SM-021 | 688208 | 4172949 | Qrtz, Clct, Ilt, (Kln), (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-022 | 688144 | 4172943 | Qrtz, Clct, Ilt, (Kln) | Al-clays | Al-clays |
SM-023 | 690300 | 4172194 | Qrtz, Clct, Ilt, (Kln), (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-024 | 690578 | 4173576 | Qrtz, Clct, Ilt, (Kln) | Al-clays | Al-clays |
SM-025 | 691136 | 4171422 | Qrtz, Clct, Ilt, (Kln) | Al-clays | Al-clays |
SM-026 | 691279 | 4171054 | Qrtz, Clct, Ilt, (Kln) | Al-clays | Al-clays |
SM-027 | 690547 | 4168433 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-028 | 690801 | 4166932 | Qrtz, Kln, Ilt (Gth) | Al-clays | Al-clays |
SM-032 | 689157 | 4165983 | Qrtz, Kln, Ilt (Gth) | Gth, Al-clays | Gth, Al-clays |
SM-033 | 689100 | 4162862 | Qrtz, Gpsm, Jrs, Gth, (Ilt) | Jrs, Al-clays | Jrs, Al-clays |
SM-034 | 688985 | 4163013 | Qrtz, Jrs, Gth, (Ilt) | Jrs, Al-clays | Jrs, Al-clays |
SM-037 | 693387 | 4163543 | Qrtz, Clct, Kln, Ilt (Hem) | Al-clays | Al-clays |
SM-038 | 694656 | 4163533 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-040 | 693171 | 4164411 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-041 | 695693 | 4165457 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-042 | 695601 | 4165532 | Qrtz, Clct, Kln, Ilt | Al-clays | |
SM-043 | 696901 | 4166148 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-044 | 698423 | 4165822 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-048 | 696988 | 4166618 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-049 | 696847 | 4166584 | Qrtz, Clct, Kln, (Ilt) | Al-clays | |
SM-051 | 696369 | 4169218 | Qrtz, Clct, Kln, Gpsm (Ilt) | Gpsm, Al-clays | Gpsm, Al-clays |
SM-052 | 694262 | 4169509 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-053 | 694072 | 4167346 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-054 | 694005 | 4167439 | Qrtz, Clct, Kln, (Ilt) (Hem) | Hem, Al-clays | Hem, Al-clays |
SM-055 | 694030 | 4167398 | Qrtz, Clct, Ilt, (Kln) | Al-clays | Al-clays |
SM-056 | 693324 | 4166865 | Qrtz, Clct, Kln, Ilt | Al-clays | Al-clays |
SM-060 | 687554 | 4161144 | Gpsm, Qrtz, Gth, (Ilt) | Gth, Gpsm, Al-clays | Gth, Gpsm, Al-clays |
SM-061 | 687287 | 4161083 | Gpsm, Qrtz, Jrs, (Ilt) | Jar, Gpsm, Al-clays | Jar, Gpsm, Al-clays |
SM-065 | 684979 | 4160908 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-066 | 683410 | 4161714 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-067 | 683238 | 4161640 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-068 | 683593 | 4161880 | Qrtz, Clct, Kln, (Ilt) | Al-clays | |
SM-069 | 684342 | 4164688 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-070 | 681045 | 4164535 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-071 | 680868 | 4164654 | Qrtz, Clct, Kln, (Ilt) | Al-clays | |
SM-072 | 682822 | 4167063 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
SM-073 | 683370 | 4166746 | Qrtz, Clct, Kln, (Ilt) | Al-clays | Al-clays |
References
- Perceval Verde, M.Á.; López-Morell, M.Á.; Sánchez Rodríguez, A. (Eds.) Minería Y Desarrollo Económico En España; Editorial Síntesis e Instituto Geológico y Minero de España: Madrid, Spain, 2006; p. 303. [Google Scholar]
- Manteca Martínez, J.I.; Pérez de Perceval Verde, M.A.; López Morell, M.A. La Industria Minera en Murcia Durante la Época Contemporánea. In Bocamina. Patrimonio Minero De La Región De Murcia; Ayuntamiento de Murcia, Museo de la Ciencia y el Agua: Murcia, Spain, 2005; pp. 123–136. ISBN 8496005739. [Google Scholar]
- López-Morell, M.Á.; de Perceval Verde, M.Á.P. From Old Mining to New Mining: The Introduction of Differential Flotation in Spanish Mines and Its Environmental Impact. Rev. Hist. Ind.—Ind. Hist. Rev. 2019, 28, 119–148. [Google Scholar] [CrossRef]
- Orejas, A.; Antolinos, J.A. Les Mines de la Sierra de Cartagena. In Atlas Historique Des Zones Minières d’Europe; Dossier II; Comisión Europea, Cooperación Europea en Ciencia y Tecnología, Dirección General de Investigación e Innovación, Eds.; Publications Office: Luxembourg, 2001; pp. 1–14. [Google Scholar]
- López-García, J.Á.; Oyarzun Muñoz, R.; Lunar Hernández, M.D.R. Silver and Lead Mineralogy in Gossan Type Deposits of Sierra de Cartagena, Southeast Spain. Trans. Inst. Min. Metall. 1988, 97, 82–88. [Google Scholar]
- Nordstrom, D.K.; Alpers, C.N. Negative pH, Efflorescent Mineralogy, and Consequences for Environmental Restoration at the Iron Mountain Superfund Site, California. Proc. Natl. Acad. Sci. USA 1999, 96, 3455–3462. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and Microbiology of Mine Drainage: An Update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Pereira, I.; Alcalde-Aparicio, S.; Ferrer-Julià, M.; Carreño, M.F.; García-Meléndez, E. Monitoring Sedimentary Areas from Mine Waste Products with Sentinel-2 Satellite Images: A Case Study in the SE of Spain. Eur. J. Soil Sci. 2023, 74, e13336. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Seal, R.R., II; Meier, A.L.; Kornfeld, J.M. Secondary Sulfate Minerals Associated with Acid Drainage in the Eastern US: Recycling of Metals and Acidity in Surficial Environments. Chem. Geol. 2005, 215, 407–431. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T. Seasonal Impact of Acid Mine Drainage on Water Quality and Potential Ecological Risk in an Old Sulphide Exploitation. Environ. Sci. Pollut. 2024, 31, 21124–21135. [Google Scholar] [CrossRef] [PubMed]
- García-Lorenzo, M.L.; Marimón, J.; Navarro-Hervás, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Molina-Ruiz, J. Impact of acid mine drainages on surficial waters of an abandoned mining site. Environ. Sci. Pollut. Res. 2016, 23, 6014–6023. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Naranjo, F.J.; Arranz-González, J.C.; Rodríguez-Gómez, V.; Rodríguez Pacheco, R.L.; Vadillo, L. Geochemical anomalies for the determination of surface stream sediments pollution: Case of Sierra de Cartagena-La Unión mining district, Spain. Environ. Monit. Assess. 2020, 192, 247. [Google Scholar] [CrossRef] [PubMed]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; de Ignacio-San José, C.; Lillo, J.; Faz, Á. Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain). Remote Sens. 2020, 12, 2042. [Google Scholar] [CrossRef]
- Rodríguez-Pacheco, R.; Brime, Á.; Gascó, G.; Pérez-Jodra, C.; Martín-Martínez, A.; García-García, C.; Méndez, A. Experimental Study of Efflorescence Salt Crusts Formation in Tailings Dams: Possibility of Metal Recovery. Miner. Eng. 2022, 185, 107673. [Google Scholar] [CrossRef]
- Cuevas, J.G.; Faz, A.; Martínez-Martínez, S.; Gabarrón, M.; Beltrá, J.C.; Mrtínez, J.; Acosta, J.A. Spatial distribution and pollution evaluation in dry riverbeds affected by mine tailings. Environ. Geochem. Health 2023, 45, 9157–9173. [Google Scholar] [CrossRef] [PubMed]
- Habashi, J.; Oskouei, M.M.; Moghadam, H.J. Classification of ASTER Data by Neural Network for Mapping Alterations Related to Copper and Iron Mineralization in Birjand. J. Min. Environ. 2024, 15, 649–665. [Google Scholar] [CrossRef]
- Buzzi, J.; Riaza, A.; García-Meléndez, E.; Carrère, V.; Holzwarth, S. Monitoring of river contamination derived from acid mine drainage using airborne imaging spectroscopy (HyMap data, South-West Spain). River Res. Appl. 2016, 32, 125–136. [Google Scholar] [CrossRef]
- Davies, G.E.; Calvin, W.M. Mapping acidic mine waste with seasonal airborne hyperspectral imagery at varying spatial scales. Environ. Earth Sci. 2017, 76, 432. [Google Scholar] [CrossRef]
- Farrand, W.H.; Bhattacharya, S. Tracking Acid Generating Minerals and Trace Metal Spread from Mines using Hyperspectral Data: Case Studies from Northwest India. Int. J. Remote Sens. 2021, 42, 2920–2939. [Google Scholar] [CrossRef]
- Krutz, D.; Müller, R.; Knodt, U.; Günther, B.; Walter, I.; Sebastian, I.; Säuberlich, T.; Reulke, R.; Carmona, E.; Eckardt, A.; et al. The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 1622. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, R.; Daraio, M.; Guarini, R.; Longo, F.; Lorusso, R.; Dini, L.; Lopinto, E. PRISMA Mission Status and Perspective. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4503–4506. [Google Scholar] [CrossRef]
- Thompson, D.; Thompson, D.R.; Green, R.O.; Bradley, C.; Brodrick, P.G.; Dor, B.; Bennett, M.; Bernas, M.; Carmon, N.; Chadwick, K.D.; et al. On-Orbit Calibration and Performance of the EMIT Imaging Spectrometer. ESS Open Arch. 2023, 303, 113986. [Google Scholar] [CrossRef]
- Matsunaga, T.; Iwasaki, A.; Nakamura, R.; Yamamoto, H.; Yamazaki, A.; Tsuchida, S.; Takeda, M.; Aoki, Y.; Kashimura, O.; Tanii, J.; et al. Hyperspectral Imager Suite (HISUI): Its Launch and Current Status. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3272–3273. [Google Scholar] [CrossRef]
- Chabrillat, S.; Foerster, S.; Segl, K.; Beamish, A.; Brell, M.; Asadzadeh, S.; Milewski, R.; Ward, K.J.; Brosinsky, A.; Koch, K.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission: Initial Scientific Results Two Years after Launch. Remote Sens. Environ. 2024, 315, 114379. [Google Scholar] [CrossRef]
- Chirico, R.; Mondillo, N.; Laukamp, C.; Mormone, A.; Di Martire, D.; Novellino, A.; Balassone, G. Mapping hydrothermal and supergene alteration zones associated with carbonate-hosted Zn-Pb deposits using PRISMA satellite imagery. Ore Geol. Rev. 2023, 152, 105244. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Zhou, X.; Chabrillat, S. Assessment of the Spaceborne EnMAP Hyperspectral Data for Alteration Mineral Mapping: A Case Study of the Reko Diq Porphyry Cu–Au Deposit, Pakistan. Remote Sens. Environ. 2024, 314, 114389. [Google Scholar] [CrossRef]
- Chakraborty, R.; Rachdi, I.; Thiele, S.; Booysen, R.; Kirsch, M.; Lorenz, S.; Gloaguen, R.; Sebari, I. A Spectral and Spatial Comparison of Satellite-Based Hyperspectral Data for Geological Mapping. Remote Sens. 2024, 16, 2089. [Google Scholar] [CrossRef]
- Matsunaga, T.; Tachikawa, T.; Kashimura, O. An Overview of Geologic and Environmental Applications of HISUI. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 4674–4675. [Google Scholar] [CrossRef]
- Tripathi, P.; Garg, R.D. Potential of DESIS and PRISMA Hyperspectral Remote Sensing Data in Rock Classification and Mineral Identification: A Case Study for Banswara in Rajasthan, India. Environ. Monit. Assess. 2023, 195, 575. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.; Fathianpour, N.; Soltani-Mohammadi, S. PRISMA hyperspectral imagery for mapping alteration zones associated with Kuhpanj porphyry copper deposit, Southern Iran. Eur. J. Remote Sens. 2024, 57, 2299369. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Singer, R.B. Near-infrared spectral reflectance of mineral mixtures: Systematic combination of pyroxenes, olivine, and iron oxides. J. Geophys. 1981, 86, 7967–7982. [Google Scholar] [CrossRef]
- Rossman, G.R.; Ehlmann, B.L. Electronic Spectra of Minerals in the Visible and Near-Infrared Regions. In Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Bishop, J.L., Bell, J.F., III, Moersch, J.E., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 3–20. [Google Scholar]
- Harris, D.C.; Bertolucci, M.D. Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, 1st ed.; Dover Publications: New York, NY, USA, 1989; ISBN 0-486-66144-X. [Google Scholar]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences; Rencz, A.N., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1999; pp. 3–58. [Google Scholar]
- Alcolea, A.; Fernández-López, C.; Vázquez, M.; Caparrós, A.; Ibarra, I.; García, C.; Zarroca, M.; Rodríguez, R. An assessment of the influence of sulfidic mine wastes on rainwater quality in a semiarid climate (SE Spain). Atmos. Environ. 2015, 107, 85–94. [Google Scholar] [CrossRef]
- Schodlok, M.C.; Frei, M.; Segl, K. Implications of New Hyperspectral Satellites for Raw Materials Exploration. Miner. Econ. 2022, 35, 495–502. [Google Scholar] [CrossRef]
- Brezini, S.E.; Deville, Y. Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability. Sensors 2023, 23, 2341. [Google Scholar] [CrossRef] [PubMed]
- Dian, R.; Li, S.; Guo, A.; Fang, L. Deep Hyperspectral Image Sharpening. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5345–5355. [Google Scholar] [CrossRef] [PubMed]
- De Los Reyes, R.; Richter, R.; Plank, S.; Marshall, D. Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2. Remote Sens. 2024, 16, 351. [Google Scholar] [CrossRef]
- Milewski, R.; Chabrillat, S.; Behling, R. Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based on Multitemporal Landsat and Hyperspectral Hyperion Data. Remote Sens. 2017, 9, 170. [Google Scholar] [CrossRef]
- García, C. Impacto y Riesgo Ambiental De Los Residuos Minero-Metalúrgicos De La Sierra De Cartagena-La Unión (Murcia-España). Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Spain, 2004. Available online: https://repositorio.upct.es/entities/publication/c0907d15-3c6d-479a-a40d-7ae65ff029b0 (accessed on 5 March 2025).
- Conesa, C. El Medio Físico De La Región De Murcia; Universidad de Murcia: Murcia, Spain, 2006; ISBN 978-84-8371-614-4. [Google Scholar]
- Alonso Sarriá, F.; López Bermúdez, F.; Conesa García, C. Synoptic conditions producing extreme rainfall events along the Mediterranean coast of the Iberian Peninsula. In Dryland Rivers: Hydrology and Geomorphology of Semi-Arid Channels; Bull, L.J., Kirby, M.J., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2002; pp. 351–371. [Google Scholar]
- Castillo Requena, C. Estudio sobre un fenómeno atmosférico responsable de intensos y numerosos aguaceros en la España Peninsular: La Gota Fría. Rev. Paralelo 1982, 37, 31–34. [Google Scholar]
- FAO-WRB. World Reference Base for Soil Resources 2006, First Update 2007: A Framework for International Classification, Correlation and Communication; FAO World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007; Available online: https://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (accessed on 5 March 2025).
- Sanz de Galdeano, C. Geologic evolution of the Betic Cordilleras in Western Mediterranean. Miocene to the present. Tectonophysics 1990, 172, 107–119. [Google Scholar] [CrossRef]
- Larouzière, F.; Bolze, J.; Bordet, P.; Hernyez, J.; Montenat, C.; Ott D’Estevou, P. The Betic segment of the lithospheric Trans-Alboran shear zone during the late Miocene. Tectonophysics 1988, 152, 41–52. [Google Scholar] [CrossRef]
- Silva, P.G.; Goy, J.L.; Somoza, L.; Zazo, C.; Bardají, T. Landscape response to strike-slip faulting linked to collisional settings: Quaternary tectonics and basin formation in the Eastern Betics, southern Spain. Tectonophysics 1993, 224, 289–303. [Google Scholar] [CrossRef]
- Bardají, T.; Silva, P.G.; Goy, J.; Zazo, C. Cartografía Geomorfológica Y Memoria De La Hoja 977 (Cartagena). En: Mapa Geológico De España a Escala 1:50,000; Instituto Geológico y Minero de España: Madrid, Spain, 2004. [Google Scholar]
- Google Earth Pro 7.3.6.10201 (64-bit). Released: 13 January 2025. Available online: https://earth.google.com/web/ (accessed on 7 March 2025).
- Bedini, E.; Chen, J. Prospection for economic mineralization using PRISMA satellite hyperspectral remote sensing imagery: An example from central East Greenland. J. Hyperspectral Remote Sens. 2022, 12, 124–130. [Google Scholar] [CrossRef]
- European Space Agency. User Guides—Sentinel-2 MSI—Sentinel Online. Available online: https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 13 January 2025).
- Crowley, J.K.; Brickey, D.W.; Rowan, L.C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band depth images. Remote Sens. Environ. 1989, 29, 121–134. [Google Scholar] [CrossRef]
- Gherfat, H.; Awawdeh, M.; Howari, F.; Al-Rawabdeh, A. Mineral exploration using multispectral and hyperspectral remote sensing data. In Earth Observation, Geoinformatics for Geosciences; Stathopoulos, N., Tsatsaris, A., Kalogeropoulos, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 197–222. [Google Scholar] [CrossRef]
- Sahwan, W.; Lucke, B.; Sprafke, T.; Vanselow, K.A.; Bäumler, R. Relationships between spectral features, iron oxides and colours of surface soils in northern Jordan. Eur. J. Soil Sci. 2020, 72, 80–97. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C.; Simpson, C.J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens. Environ. 2005, 99, 105–126. [Google Scholar] [CrossRef]
- Cudahy, T. Australian ASTER Geoscience Product Notes, Version 1; CSIRO ePublish No. EP-30-07-12-44; CSIRO: Canberra, Australia, 2012. [Google Scholar]
- van der Werff, H.M.A.; van der Meer, F.D. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.; Jing, L.; Wang, F.; Zhao, M.; Ding, H. Assessment of the capability of Sentinel-2 imagery for iron-bearing minerals mapping: A case study in the Cuprite area, Nevada. Remote Sens. 2020, 12, 3028. [Google Scholar] [CrossRef]
- United States Geological Survey. Spectral Library, 2017. Available online: https://www.usgs.gov (accessed on 30 June 2022).
- Robertson, K.M.; Milliken, R.E.; Li, S. Estimating Mineral Abundances of Clay and Gypsum Mixtures Using Radiative Transfer Models Applied to Visible-Near Infrared Reflectance Spectra. Icarus 2016, 277, 171–186. [Google Scholar] [CrossRef]
- Santamaría-López, Á.; Suárez, M.; García-Romero, E. Detection limits of kaolinites and some common minerals in binary mixtures by short-wave infrared spectroscopy. Appl. Clay Sci. 2024, 250, 107269. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Gilmore, C.J.; Kaduk, J.A.; Schenk, H. International Tables for Crystallography, Volume H: Powder Diffraction; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Fan, R.; Quian, G.; Li, Y.; Short, D.M.; Schumann, C.R.; Chen, M.; Smart, S.R.; Gerson, A.R. Evolution of pyrite oxidation from a 10-year kinetic leach study: Implications for secondary mineralisation in acid mine drainage control. Chem. Geol. 2022, 588, 120653. [Google Scholar] [CrossRef]
- Shi, X.Z.; Oldmeadow, D.; Aspandiar, M. Observations on mineral transformations and potential environmental consequences during the oxidation of iron sulphide-rich materials in incubation experiments. Eur. J. Soil Sci. 2015, 66, 393–405. [Google Scholar] [CrossRef]
- Pan, Y.; Fu, Y.; Liu, S.; Ma, T.; Tao, X.; Ma, Y.; Fan, S.; Dang, Z.; Lu, G. Spatial and Temporal Variations of Metal Fractions in Paddy Soil Flooding with Acid Mine Drainage. Environ. Res. 2022, 212, 113241. [Google Scholar] [CrossRef] [PubMed]
- Dold, B.; Fontboté, L. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chem. Geol. 2002, 189, 135–163. [Google Scholar] [CrossRef]
- Esmaeili, A.; Mobini, M.; Eslami, H. Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Appl. Water Sci. 2019, 9, 97. [Google Scholar] [CrossRef]
- Carfora, M.F.; Casa, R.; Laneve, G.; Mzid, N.; Pascucci, S.; Pignatti, S. Prisma noise coefficients estimation. In Proceedings of the IGARSS 2022—IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7531–7534. [Google Scholar] [CrossRef]
- Pignatti, S.; Amodeo, A.; Carfora, M.F.; Casa, R.; Mona, L.; Palombo, A.; Pascucci, S.; Rosoldi, M.; Santini, F.; Laneve, G. PRISMA L1 and L2 Performances within the PRISCAV Project: The Pignola Test Site in Southern Italy. Remote Sens. 2022, 14, 1985. [Google Scholar] [CrossRef]
- LP DAAC. EMIT Overview. Available online: https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/emit-overview/ (accessed on 10 March 2025).
- German Space Agency (DLR). Foreground Mission. Available online: https://www.enmap.org/data_tools/foreground_mission/ (accessed on 13 January 2025).
- National Academies of Sciences. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Nieke, J.; Rast, M. Status: Copernicus Hyperspectral Imaging Mission for the Environment (CHIME). In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4609–4611. [Google Scholar]
Specification | PRISMA | Sentinel-2 |
---|---|---|
Orbit | Sun-synchronous, ~615 km altitude | Sun-synchronous, ~786 km altitude |
Swath Width | 30 km | 290 km |
Revisit Time (Equator) | ~29 days | ~5 days (S2A + S2B) |
Spatial Resolution | 30 m (hyperspectral) 5 m (panchromatic) | 10 m (bands: 2, 3, 4, 8) 20 m (bands: 5, 6, 7, 8A, 11, 12) 60 m (bands: 1, 9, 10) |
Spectral Range | VNIR: 400–1010 nm SWIR: 920–2500 Panchromatic: 400–700 nm | 443–2190 nm |
Spectral Width | ≤12 nm | 15–180 nm (depending on band) |
Number of Bands | VNIR: 66 bands SWIR 173 bands Panchromatic: 1 band | 13 bands |
Temporal Coverage | 2019–present | 2015 (S2A) and 2017 (S2B)–present |
Scene Size | ~30 km × 30 km | ~290 km × ~290 km |
PRISMA Date | Cloud Cover (%) | Sentinel-2 Date | Cloud Cover (%) |
---|---|---|---|
17/02/2020 | 20.24 | 15/02/2020 | 5.8 |
17/03/2021 | 0.12 | 11/03/2021 | 1.00 |
24/06/2023 | 0.00 | 24/06/2023 | 0.01 |
13/10/2023 | 0.00 | 02/10/2023 | 0.00 |
15/04/2024 | 0.08 | 14/04/2024 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, I.; García-Meléndez, E.; Ferrer-Julià, M.; van der Werff, H.; Valenzuela, P.; Cruz, J.A. Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery. Remote Sens. 2025, 17, 2582. https://doi.org/10.3390/rs17152582
Pereira I, García-Meléndez E, Ferrer-Julià M, van der Werff H, Valenzuela P, Cruz JA. Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery. Remote Sensing. 2025; 17(15):2582. https://doi.org/10.3390/rs17152582
Chicago/Turabian StylePereira, Inés, Eduardo García-Meléndez, Montserrat Ferrer-Julià, Harald van der Werff, Pablo Valenzuela, and Juncal A. Cruz. 2025. "Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery" Remote Sensing 17, no. 15: 2582. https://doi.org/10.3390/rs17152582
APA StylePereira, I., García-Meléndez, E., Ferrer-Julià, M., van der Werff, H., Valenzuela, P., & Cruz, J. A. (2025). Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery. Remote Sensing, 17(15), 2582. https://doi.org/10.3390/rs17152582