Multi-Parameter Water Quality Inversion in Heterogeneous Inland Waters Using UAV-Based Hyperspectral Data and Deep Learning Methods
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Research Framework
2.3. Data Acquisition
2.3.1. Data Preprocessing and Labeling
2.3.2. Field Data Collection
3. Methods
3.1. Spectral Data Processing and Analysis
3.1.1. Spectral Preprocessing
3.1.2. Spectral Feature Extraction
3.1.3. Pearson Correlation Analysis
3.2. Regression Methods
3.2.1. Proposed TL-Net Model
3.2.2. LSTM Model
3.2.3. Transformer
3.2.4. Cross-Temporal Attention Module
3.2.5. Adaptive Feature Fusion Module
3.2.6. Training Settings
3.3. Model Evaluation
4. Results
4.1. Data Analysis
4.2. Spectral Band Correlation Analysis and Water Quality Parameter Relationships
4.3. Spectral Differentiation and Convolution Feature Extraction
4.4. Analysis and Comparison of Water Parameter Estimation Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, B.; Zhang, J.; Zheng, P.; Li, Z.; Wang, Y.; Jia, G.; Yu, X. Water security assessment for effective water resource management based on multi-temporal blue and green water footprints. J. Hydrol. 2024, 632, 130761. [Google Scholar] [CrossRef]
- Chen, W.; He, B.; Nover, D.; Lu, H.; Liu, J.; Sun, W.; Chen, W. Farm ponds in southern China: Challenges and solutions for conserving a neglected wetland ecosystem. Sci. Total Environ. 2019, 659, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, H.; Wei, C.; Cao, M.; Zhang, J.; Zhang, H.; Yuan, D. Assessing water quality environmental grades using hyperspectral images and a deep learning model: A case study in Jiangsu, China. Ecol. Inform. 2024, 84, 102854. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Shang, F.; Liu, Y.; Wan, L.; Feng, W.; Timofte, R. Arbitrary-scale Super-resolution via Deep Learning: A Comprehensive Survey. Inf. Fusion 2024, 102, 102015. [Google Scholar] [CrossRef]
- Chen, B.; Mu, X.; Chen, P.; Wang, B.; Choi, J.; Park, H.; Xu, S.; Wu, Y.; Yang, H. Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data. Ecol. Indic. 2021, 133, 108434. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Chen, T.; Gu, X.; Zhang, L.; Li, X.; Tang, R.; He, Y.; Chen, G.; Zhang, B. Monitoring water quality parameters of freshwater aquaculture ponds using UAV-based multispectral images. Ecol. Indic. 2024, 167, 112644. [Google Scholar] [CrossRef]
- Ding, C.; Pu, F.; Li, C.; Xu, X.; Zou, T.; Li, X. Combining Artificial Neural Networks with Causal Inference for Total Phosphorus Concentration Estimation and Sensitive Spectral Bands Exploration Using MODIS. Water 2020, 12, 2372. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects. Earth’s Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Guimarães, T.T.; Veronez, M.R.; Koste, E.C.; Souza, E.M.; Brum, D.; Gonzaga, L.; Mauad, F.F. Evaluation of Regression Analysis and Neural Networks to Predict Total Suspended Solids in Water Bodies from Unmanned Aerial Vehicle Images. Sustainability 2019, 11, 2580. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating Above-Ground Biomass of Maize Using Features Derived from UAV-Based RGB Imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, H.; Li, D.; Altan, O.; Cheng, T. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sens. Environ. 2019, 232, 111338. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Cao, X.; He, B.; Feng, Q.; Yang, F.; Liu, H.; Kutser, T.; Xu, M.; Xiao, F.; et al. Spatial-temporal distribution of labeled set bias remote sensing estimation: An implication for supervised machine learning in water quality monitoring. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103959. [Google Scholar] [CrossRef]
- Lu, X.; Fan, Y.; Hu, Y.; Zhang, H.; Wei, Y.; Yan, Z. Spatial distribution characteristics and source analysis of shallow groundwater pollution in typical areas of Yangtze River Delta. Sci. Total Environ. 2024, 906, 167369. [Google Scholar] [CrossRef]
- Li, H.; Wei, C.; Yang, Y.; Zhong, Z.; Xu, M.; Yuan, D. Unified Dynamic Dictionary and Projection Optimization with Full-Rank Representation for Hyperspectral Anomaly Detection. IEEE J. Sel.Topics Appl. Earth Observ. Remote Sens. 2025, 18, 4032–4049. [Google Scholar] [CrossRef]
- Ali, A.; Zhou, G.; Lopez, F.P.A.; Xu, C.; Jing, G.; Tan, Y. Deep learning for water quality multivariate assessment in inland water across China. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104078. [Google Scholar] [CrossRef]
- Mohsen, A.; Ali, Y.; Al-Sorori, W.; Maqtary, N.A.; Al-Fuhaidi, B.; Altabeeb, A.M. A performance comparison of machine learning classifiers for COVID-19 Arabic Quarantine tweets sentiment analysis. In Proceedings of the 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 10–12 August 2021; pp. 1–8. [Google Scholar]
- Yoosefzadeh-Najafabadi, M.; Earl, H.J.; Tulpan, D.; Sulik, J.; Eskandari, M. Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield from Hyperspectral Reflectance in Soybean. Front. Plant Sci. 2021, 11, 624273. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2020, 237, 111562. [Google Scholar] [CrossRef]
- Mamun, M.; Kim, J.-J.; Alam, M.A.; An, K.-G. Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches. Water 2019, 12, 30. [Google Scholar] [CrossRef]
- Yajima, H.; Derot, J. Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases. J. Hydroinform. 2017, 20, 206–220. [Google Scholar] [CrossRef]
- Chen, S.; Fang, G.; Huang, X.; Zhang, Y. Water quality prediction model of a water diversion project based on the improved artificial bee colony–backpropagation neural network. Water 2018, 10, 806. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef]
- Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7232–7245. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M. Deep Generative Endmember Modeling: An Application to Unsupervised Spectral Unmixing. IEEE Trans. Comput. Imaging 2020, 6, 374–384. [Google Scholar] [CrossRef]
- Zhan, L.; Xu, Y.; Zhu, J.; Liu, Z. Optimizing Chlorophyll-a Concentration Inversion in Coastal Waters Using SVD and Deep Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 907–920. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN with Multiscale Convolution and Diversified Metric for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [Google Scholar] [CrossRef]
- Ullah, F.; Ullah, I.; Khan, R.U.; Khan, S.; Khan, K.; Pau, G. Conventional to Deep Ensemble Methods for Hyperspectral Image Classification: A Comprehensive Survey. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3878–3916. [Google Scholar] [CrossRef]
- Pyo, J.; Duan, H.; Baek, S.; Kim, M.S.; Jeon, T.; Kwon, Y.S.; Lee, H.; Cho, K.H. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sens. Environ. 2019, 233, 111350. [Google Scholar] [CrossRef]
- Niu, C.; Tan, K.; Jia, X.; Wang, X. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environ. Pollut. 2021, 286, 117534. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, J.; Meng, H.; Lai, Y.; Xu, M. Remote sensing inversion of water quality parameters in the Yellow River Delta. Ecol. Indic. 2023, 155, 110914. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Montes, C.M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E.A.; Pederson, T.; Moore, C.E.; Brown, K.L.; Raines, C.; et al. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. Remote Sens. Environ. 2019, 231, 111176. [Google Scholar] [CrossRef]
- Cai, J.; Meng, L.; Liu, H.; Chen, J.; Xing, Q. Estimating Chemical Oxygen Demand in estuarine urban rivers using unmanned aerial vehicle hyperspectral images. Ecol. Indic. 2022, 139, 108936. [Google Scholar] [CrossRef]
- Guo, Q.; Fang, L.; Wang, R.; Zhang, C. Multivariate Time Series Forecasting Using Multiscale Recurrent Networks with Scale Attention and Cross-Scale Guidance. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 540–554. [Google Scholar] [CrossRef]
- Huang, R.; Wei, C.; Wang, B.; Yang, J.; Xu, X.; Wu, S.; Huang, S. Well performance prediction based on Long Short-Term Memory (LSTM) neural network. J. Petrol. Sci. Eng. 2022, 208, 109686. [Google Scholar] [CrossRef]
- Ray, P.; Reddy, S.S.; Banerjee, T. Various dimension reduction techniques for high dimensional data analysis: A review. Artif. Intell. Rev. 2021, 54, 3473–3515. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Ansar, W.; Goswami, S.; Chakrabarti, A.; Chakroborty, B. A novel selective learning based transformer encoder architecture with enhanced word representation. Appl. Intell. 2022, 53, 9424–9443. [Google Scholar] [CrossRef]
Parameter | Fitting Formula | Selected Wavelength | R2 | MSE | RMSE | MAE | MAPE (%) |
---|---|---|---|---|---|---|---|
TN | 0.7253 | 0.2934 | 0.2754 | 3.102 | 15.6723 | ||
DO | 0.7834 | 0.2768 | 0.2854 | 2.043 | 12.3489 | ||
TSS | 0.7142 | 0.2412 | 0.2694 | 2.841 | 18.1024 | ||
Chla | 0.7698 | 0.2231 | 0.2653 | 3.802 | 11.4587 |
Water Quality Parameter | Model | R2 | MSE | RMSE | MAE | MAPE (%) |
---|---|---|---|---|---|---|
TN | PLSR | 0.8067 | 0.1006 | 0.3172 | 0.2137 | 24.9592 |
XGBoost | 0.8626 | 0.0715 | 0.2674 | 0.1587 | 13.7125 | |
CatBoost | 0.9494 | 0.0261 | 0.1616 | 0.0918 | 10.1304 | |
SVR | 0.9357 | 0.0332 | 0.1822 | 0.1019 | 7.7645 | |
CNN | 0.9227 | 0.0402 | 0.2006 | 0.1569 | 10.9147 | |
LSTM | 0.9547 | 0.0236 | 0.1536 | 0.1089 | 8.8071 | |
Transformer | 0.9689 | 0.0162 | 0.1273 | 0.0834 | 9.9290 | |
TL-Net | 0.9938 | 0.0032 | 0.0567 | 0.0369 | 2.6062 | |
DO | PLSR | 0.8068 | 0.3896 | 0.6242 | 0.4184 | 65.5505 |
XGBoost | 0.8764 | 0.2492 | 0.4992 | 0.2914 | 47.0733 | |
CatBoost | 0.9566 | 0.0869 | 0.2947 | 0.1624 | 23.9733 | |
SVR | 0.9298 | 0.1404 | 0.3747 | 0.2058 | 18.0641 | |
CNN | 0.9001 | 0.2014 | 0.4488 | 0.2516 | 37.7160 | |
LSTM | 0.9635 | 0.0736 | 0.2713 | 0.1984 | 12.8829 | |
Transformer | 0.9760 | 0.0483 | 0.2198 | 0.1448 | 15.7367 | |
TL-Net | 0.9938 | 0.0124 | 0.1113 | 0.0728 | 10.9364 | |
TSS | PLSR | 0.8858 | 8.0169 | 2.8314 | 1.9217 | 1.1741 |
XGBoost | 0.9019 | 6.8891 | 2.6247 | 1.3250 | 0.7981 | |
CatBoost | 0.9686 | 2.2062 | 1.4853 | 0.6915 | 0.4156 | |
SVR | 0.9325 | 4.7318 | 2.1753 | 1.0958 | 0.6618 | |
CNN | 0.9497 | 3.5310 | 1.8791 | 1.3181 | 0.8049 | |
LSTM | 0.9914 | 0.6035 | 0.7768 | 0.3916 | 0.2415 | |
Transformer | 0.9549 | 3.1705 | 1.7806 | 1.4167 | 0.8535 | |
TL-Net | 0.9979 | 0.1506 | 0.3881 | 0.2745 | 0.1674 | |
Chla | PLSR | 0.8768 | 0.0020 | 0.0451 | 0.0291 | 0.9287 |
XGBoost | 0.9366 | 0.0010 | 0.0323 | 0.0150 | 0.4809 | |
CatBoost | 0.9787 | 0.0004 | 0.0187 | 0.0079 | 0.2529 | |
SVR | 0.9525 | 0.0009 | 0.0292 | 0.0228 | 0.7353 | |
CNN | 0.9866 | 0.0002 | 0.0149 | 0.0110 | 0.3535 | |
LSTM | 0.9099 | 0.0015 | 0.0385 | 0.0307 | 0.9920 | |
Transformer | 0.9862 | 0.0002 | 0.0151 | 0.0108 | 0.3445 | |
TL-Net | 0.9942 | 0.0001 | 0.0102 | 0.0079 | 0.2568 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, N.; Du, Z.; Huang, D.; Shi, M.; Zhong, Z.; Yuan, D. Multi-Parameter Water Quality Inversion in Heterogeneous Inland Waters Using UAV-Based Hyperspectral Data and Deep Learning Methods. Remote Sens. 2025, 17, 2191. https://doi.org/10.3390/rs17132191
Li H, Wang N, Du Z, Huang D, Shi M, Zhong Z, Yuan D. Multi-Parameter Water Quality Inversion in Heterogeneous Inland Waters Using UAV-Based Hyperspectral Data and Deep Learning Methods. Remote Sensing. 2025; 17(13):2191. https://doi.org/10.3390/rs17132191
Chicago/Turabian StyleLi, Hongran, Nuo Wang, Zixuan Du, Deyu Huang, Mengjie Shi, Zhaoman Zhong, and Dongqing Yuan. 2025. "Multi-Parameter Water Quality Inversion in Heterogeneous Inland Waters Using UAV-Based Hyperspectral Data and Deep Learning Methods" Remote Sensing 17, no. 13: 2191. https://doi.org/10.3390/rs17132191
APA StyleLi, H., Wang, N., Du, Z., Huang, D., Shi, M., Zhong, Z., & Yuan, D. (2025). Multi-Parameter Water Quality Inversion in Heterogeneous Inland Waters Using UAV-Based Hyperspectral Data and Deep Learning Methods. Remote Sensing, 17(13), 2191. https://doi.org/10.3390/rs17132191