Revolutionizing the Detection of Lightning-Generated Whistlers: A Rapid Recognition Model with Parallel Bidirectional SRU Network
Abstract
1. Introduction
2. Materials and Methods
2.1. Overall Framework Structure
2.2. Detailed Implementation Process
2.2.1. Bio-Inspired Auditory Feature Encoder
2.2.2. Sandglass-Shaped DSConv Network
2.2.3. Parallel Bidirectional Gated Temporal Unit
2.2.4. Multivariate Spatiotemporal Detection Head
2.2.5. Loss Function
2.3. Data Partitioning and Feature Engineering
2.4. Experimental Configuration and Model Setting
3. Results
3.1. Evaluation Indicators
3.2. Analysis of Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M.; et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. 2003, 108, ACL 4-1–ACL 4-15. [Google Scholar] [CrossRef]
- Barkhausen, H. Whistling Tones from the Earth. Proc. Inst. Radio Eng. 1930, 18, 1155–1159. [Google Scholar] [CrossRef]
- Storey, L.R.O. An investigation of whistling atmospherics. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1953, 246, 113–141. [Google Scholar]
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Stanford University Press: Stanford, CA, USA, 1965. [Google Scholar]
- Smith, R.L.; Helliwell, R.A.; Yabroff, I.W. A theory of trapping of whistlers in field-aligned columns of enhanced ionization. J. Geophys. Res. 1960, 65, 815–823. [Google Scholar] [CrossRef]
- Armstrong, W.C. Lightning triggered from the Earth’s magnetosphere as the source of synchronized whistlers. Nature 1987, 327, 405–408. [Google Scholar] [CrossRef]
- Hayakawa, M.; Yoshino, T.; Morgounov, V.A. On the possible influence of seismic activity on the propagation of magnetospheric whistlers at low latitudes. Phys. Earth Planet. Inter. 1993, 77, 97–108. [Google Scholar] [CrossRef]
- Hayakawa, M. Association of whistlers with lightning discharges on the Earth and on Jupiter. J. Atmos. Terr. Phys. 1995, 57, 525–535. [Google Scholar] [CrossRef]
- Santolík, O.; Parrot, M.; Inan, U.S.; Burešová, D.; Gurnett, D.A.; Chum, J. Propagation of unducted whistlers from their source lightning: A case study. J. Geophys. Res. Space Phys. 2009, 114, A03212. [Google Scholar] [CrossRef]
- Collier, A.B.; Hughes, A.R.W.; Lichtenberger, J.; Steinbach, P. Seasonal and diurnal variation of lightning activity over southern Africa and correlation with European whistler observations. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2006; Volume 24, pp. 529–542. [Google Scholar]
- Fiser, J.; Chum, J.; Diendorfer, G.; Parrot, M.; Santolík, O. Whistler intensities above thunderstorms. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2010; Volume 28, pp. 37–46. [Google Scholar]
- Bayupati, I.P.A.; Kasahara, Y.; Goto, Y. Study of dispersion of lightning whistlers observed by Akebono satellite in the earth’s plasmasphere. IEICE Trans. Commun. 2012, 95, 3472–3479. [Google Scholar] [CrossRef]
- Gokani, S.A.; Singh, R.; Cohen, M.B.; Kumar, S.; Venkatesham, K.; Maurya, A.K.; Selvakumaran, R.; Lichtenberger, J. Very low latitude (L = 1.08) whistlers and correlation with lightning activity. J. Geophys. Res. Space Phys. 2015, 120, 6694–6706. [Google Scholar] [CrossRef]
- Záhlava, J.; Němec, F.; Santolík, O.; Kolmašová, I.; Hospodarsky, G.B.; Parrot, M.; Kurth, W.S.; Kletzing, C.A. Lightning contribution to overall whistler mode wave intensities in the plasmasphere. Geophys. Res. Lett. 2019, 46, 8607–8616. [Google Scholar] [CrossRef]
- Ripoll, J.F.; Farges, T.; Malaspina, D.M.; Cunningham, G.S.; Hospodarsky, G.B.; Kletzing, C.A.; Wygant, J.R. Propagation and dispersion of lightning-generated whistlers measured from the Van Allen Probes. Front. Phys. 2021, 9, 722355. [Google Scholar] [CrossRef]
- Sonwalkar, V.S.; Reddy, A. Specularly reflected whistler: A low-latitude channel to couple lightning energy to the magnetosphere. Sci. Adv. 2024, 10, eado2657. [Google Scholar] [CrossRef] [PubMed]
- Fujinawa, Y.; Noda, Y. Field Observations of the Seismo-electromagnetic Effect Related to Earthquakes. In Seismoelectric Exploration: Theory, Experiments, and Applications; AGU: Washington, DC, USA, 2020; pp. 437–450. [Google Scholar]
- Liu, J.Y.; Wang, K.; Chen, C.H.; Yang, W.H.; Yen, Y.H.; Chen, Y.I.; Hatorri, K.; Su, H.T.; Hsu, R.R.; Chang, C.H. A statistical study on ELF-whistlers/emissions and M≥ 5.0 earthquakes in Taiwan. J. Geophys. Res. Space Phys. 2013, 118, 3760–3768. [Google Scholar] [CrossRef]
- Parrot, M. Electromagnetic noise due to earthquakes. In Handbook of Atmospheric Electrodynamics (1995); CRC Press: Boca Raton, FL, USA, 2017; pp. 95–116. [Google Scholar]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-parameter observations of seismogenic phenomena related to the Tokyo earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Liu, Q.; Huang, J.; Li, Z.; Shen, X. Study on the CSES Electric Field VLF Electromagnetic Pulse Sequences Triggered by Volcanic Eruptions. Atmosphere 2025, 16, 208. [Google Scholar] [CrossRef]
- Lichtenberger, J.; Ferencz, C.; Bodnár, L.; Hamar, D.; Steinbach, P. Automatic whistler detector and analyzer system: Automatic whistler detector. J. Geophys. Res. Space Phys. 2008, 113, A12201. [Google Scholar] [CrossRef]
- Lichtenberger, J.; Ferencz, C.; Hamar, D.; Steinbach, P.; Rodger, C.J.; Clilverd, M.A.; Collier, A.B. Automatic Whistler Detector and Analyzer system: Implementation of the analyzer algorithm. J. Geophys. Res. Space Phys. 2010, 115, A12214. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Holzworth, R.H.; Pfaff, R.F.; McCarthy, M.P. Study of oblique whistlers in the low-latitude ionosphere, jointly with the C/NOFS satellite and the World-Wide Lightning Location Network. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2011; Volume 29, pp. 851–863. [Google Scholar]
- Dharma, K.S.; Bayupati, I.P.; Buana, P.W. Automatic lightning whistler detection using connected component labeling method. J. Theor. Appl. Inf. Technol. 2014, 66, 638–645. [Google Scholar]
- Konan, O.J.E.Y.; Mishra, A.K.; Lotz, S. Machine learning techniques to detect and characterise whistler radio waves. arXiv 2020, arXiv:2002.01244. [Google Scholar]
- Maslej-Krešňáková, V.; Kundrát, A.; Mackovjak, Š.; Butka, P.; Jaščur, S.; Kolmašová, I.; Santolík, O. Automatic detection of atmospherics and tweek atmospherics in radio spectrograms based on a deep learning approach. Earth Space Sci. 2021, 8, e2021EA002007. [Google Scholar] [CrossRef]
- Pataki, B.Á.; Lichtenberger, J.; Clilverd, M.; Máthé, G.; Steinbach, P.; Pásztor, S.; Murár-Juhász, L.; Koronczay, D.; Ferencz, O.; Csabai, I. Monitoring space weather: Using automated, accurate neural network based whistler segmentation for whistler inversion. Space Weather 2022, 20, e2021SW002981. [Google Scholar] [CrossRef]
- Suarjaya, I.M.A.D.; Putri, D.P.S.; Tanaka, Y.; Purnama, F.; Bayupati, I.P.A.; Linawati; Kasahara, Y.; Matsuda, S.; Miyoshi, Y.; Shinohara, I. Deep Learning Model Size Performance Evaluation for Lightning Whistler Detection on Arase Satellite Dataset. Remote Sens. 2024, 16, 4264. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Z.; Yang, D.; Wang, Q.; Zima, Z.; Han, Y.; Zhou, L.; Shen, X.; Guo, Q. Automatic Recognition of the Lighting Whistler waves from the Wave Data of SCM Boarded on ZH-1 satellite. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Yuan, J.; Li, C.; Wang, Q.; Han, Y.; Wang, J.; Zeren, Z.; Huang, J.; Feng, J.; Shen, X.; Wang, Y. Lightning whistler wave speech recognition based on grey wolf optimization algorithm. Atmosphere 2022, 13, 1828. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, J.; Cao, J.; Liu, Y.; Huang, J.; Li, B.; Wang, Q.; Zhang, Z.; Zhao, Z.; Han, Y.; et al. Spaceborne Algorithm for Recognizing Lightning Whistler Recorded by an Electric Field Detector Onboard the CSES Satellite. Atmosphere 2023, 14, 1633. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, J.; Yuan, J.; Hu, R.; Peng, X.; Chen, A.; Shen, X. Lightning-generated Whistlers recognition for accurate disaster monitoring in China and its surrounding areas based on a homologous dual-feature information enhancement framework. Remote Sens. Environ. 2024, 304, 114021. [Google Scholar] [CrossRef]
- Zwicker, E. Subdivision of the audible frequency range into critical bands (Frequenzgruppen). J. Acoust. Soc. Am. 1961, 33, 248. [Google Scholar] [CrossRef]
- Mermelstein, P. Distance measures for speech recognition, psychological and instrumental. Pattern Recognit. Artif. Intell. 1976, 116, 374–388. [Google Scholar]
- Leutnant, V.; Krueger, A.; Haeb-Umbach, R. A new observation model in the logarithmic mel power spectral domain for the automatic recognition of noisy reverberant speech. In IEEE/ACM Transactions on Audio, Speech, and Language Processing; IEEE: Piscataway, NJ, USA, 2013; Volume 22, pp. 95–109. [Google Scholar]
- Molau, S.; Pitz, M.; Schluter, R.; Ney, H. Computing mel-frequency cepstral coefficients on the power spectrum. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Proceedings (cat. No. 01CH37221). IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 73–76. [Google Scholar]
- Zhou, B.; Yang, Y.Y.; Zhang, Y.T.; Gou, X.; Cheng, B.; Wang, J.; Li, L. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2018, 2, 455–461. [Google Scholar] [CrossRef]
- Zhima, Z.; Hu, Y.; Piersanti, M.; Shen, X.; De Santis, A.; Yan, R.; Yang, Y.; Zhao, S.; Zhang, Z. The seismic electromagnetic emissions during the 2010 Mw 7.8 Northern Sumatra Earthquake revealed by DEMETER satellite. Front. Earth Sci. 2020, 8, 572393. [Google Scholar]
- Huang, J.P.; Shen, X.H.; Zhang, X.M.; Lu, H.; Tan, Q.; Wang, Q.; Yan, R.; Chu, W.; Yang, Y.; Liu, D.; et al. Application system and data description of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2018, 2, 444–454. [Google Scholar] [CrossRef]
- Khir, A.W.; O’brien, A.; Gibbs, J.S.R.; Parker, K. Determination of wave speed and wave separation in the arteries. J. Biomech. 2001, 34, 1145–1155. [Google Scholar] [CrossRef]
- Mace, R.L.; Sydora, R.D. Parallel whistler instability in a plasma with an anisotropic bi-kappa distribution. J. Geophys. Res. Space Phys. 2010, 115, A7. [Google Scholar] [CrossRef]
- Zhou, D.; Hou, Q.; Chen, Y.; Feng, J.; Yan, S. Rethinking bottleneck structure for efficient mobile network design. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part III 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 680–697. [Google Scholar]
- Nascimento, M.G.; Fawcett, R.; Prisacariu, V.A. Dsconv: Efficient convolution operator. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5148–5157. [Google Scholar]
- Lei, T.; Zhang, Y.; Wang, S.I.; Dai, H.; Artzi, Y. Simple recurrent units for highly parallelizable recurrence. arXiv 2017, arXiv:1709.02755. [Google Scholar]
Datasets | Time Frame |
---|---|
Training | Continuous waveform from 1 April to 5 April |
Testing | Continuous waveform from 6 April to 10 April |
Category | Parameter |
---|---|
OS | Ubuntu22.04 (64 bit) |
CPU | Intel® Xeon(R) CPU E5-2680 v4@2.40 GHz (64 G) |
GPU | NVIDIA TITAN V (24 G) |
Deep Learning Framework | Pytorch2.2.2 + CUDA12.4 |
Programming Language | Python3.9 |
Hyperparameters | Value |
---|---|
Loss function | Binary CrossEntropy Loss |
Optimizer | Adam |
Learning rate | 0.001 |
Dropout rate | 0.3 |
Batch size | 128 |
Epoch | 50 |
Model | Precision (%) | Recall (%) | F1 (%) | Params (M) | Time Cost (h) |
---|---|---|---|---|---|
Ours | 93.0 | 88.7 | 90.7 | 0.08 | 10.8 |
Mask RCNN | 85.1 | 95.2 | 89.8 | 44.32 | 842.16 |
Mask Scoring RCNN | 85.2 | 96.3 | 90.2 | 62.75 | 935.61 |
YOLOv5 Upgraded | 91.6 | 90.0 | 90.8 | 13.78 | 579.86 |
YOLOv8s | 91.3 | 90.1 | 90.6 | 11.2 | 574.43 |
YOLOv8m | 92.5 | 89.9 | 91.2 | 25.9 | 591.82 |
YOLOv8l | 94.0 | 88.8 | 91.3 | 43.7 | 622.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yuan, J.; Yang, D.; Zhang, Z.; Yin, H.; Wang, Q.; Wang, J.; Zhima, Z.; Shen, X. Revolutionizing the Detection of Lightning-Generated Whistlers: A Rapid Recognition Model with Parallel Bidirectional SRU Network. Remote Sens. 2025, 17, 1963. https://doi.org/10.3390/rs17121963
Wang B, Yuan J, Yang D, Zhang Z, Yin H, Wang Q, Wang J, Zhima Z, Shen X. Revolutionizing the Detection of Lightning-Generated Whistlers: A Rapid Recognition Model with Parallel Bidirectional SRU Network. Remote Sensing. 2025; 17(12):1963. https://doi.org/10.3390/rs17121963
Chicago/Turabian StyleWang, Bolin, Jing Yuan, Dehe Yang, Zhihong Zhang, Hanke Yin, Qiao Wang, Jie Wang, Zeren Zhima, and Xuhui Shen. 2025. "Revolutionizing the Detection of Lightning-Generated Whistlers: A Rapid Recognition Model with Parallel Bidirectional SRU Network" Remote Sensing 17, no. 12: 1963. https://doi.org/10.3390/rs17121963
APA StyleWang, B., Yuan, J., Yang, D., Zhang, Z., Yin, H., Wang, Q., Wang, J., Zhima, Z., & Shen, X. (2025). Revolutionizing the Detection of Lightning-Generated Whistlers: A Rapid Recognition Model with Parallel Bidirectional SRU Network. Remote Sensing, 17(12), 1963. https://doi.org/10.3390/rs17121963