Estimating Wheat Traits Using Artificial Neural Network-Based Radiative Transfer Model Inversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. The Field Experimental Dataset
2.3. The Radiative Transfer Model PROSAIL
2.4. The Simulated Dataset
2.5. The Artificial Neural Network and Spectral Data Processing
2.6. Model Training and Testing
3. Results
3.1. Radiative Transfer Model Inversion
3.2. Estimating Wheat Traits
4. Discussion
4.1. Radiative Transfer Model Inversion
4.2. Estimating Wheat Traits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, V.I.; Allen, W.A. Electrooptical Remote Sensing Methods as Nondestructive Testing and Measuring Techniques in Agriculture. Appl. Opt. 1968, 7, 1819–1838. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, C.L.; Richardson, A.J.; Kanemasu, E.T. Leaf Area Index Estimates for Wheat from LANDSAT and Their Implications for Evapotranspiration and Crop Modeling. Agron. J. 1979, 71, 336–342. [Google Scholar] [CrossRef]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Palka, M.; Manschadi, A.M.; Koppensteiner, L.J.; Neubauer, T.; Fitzgerald, G.J. Evaluating the performance of the CCCI-CNI index for estimating N status of winter wheat. Eur. J. Agron. 2021, 130, 126346. [Google Scholar] [CrossRef]
- Baret, F.; Buis, S. Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems. In Advances in Land Remote Sensing; Springer: Dordrecht, The Netherlands, 2008; pp. 173–201. [Google Scholar]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef]
- Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sens. 2022, 14, 1474. [Google Scholar] [CrossRef]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat yield estimation using remote sensing data based on machine learning approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef] [PubMed]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Reinosch, N.; Münzberg, A.; Martini, D.; Niehus, A.; Seuring, L.; Troost, C.; Kumar Srivastava, R.; Berger, T.; Streck, T.; Bernardi, A. SIMLEARN—Ontologiegestützte Integration von Simulationsmodellen, Systemen für maschinelles Lernen und Planungsdaten. In 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme; Gesellschaft für Informatik e.V.: Bonn, Germany, 2023; pp. 477–482. ISBN 978-3-88579-724-1. [Google Scholar]
- Monteith, J.L. Light Distribution and Photosynthesis in Field Crops. Ann. Bot. 1965, 29, 17–37. Available online: https://www.jstor.org/stable/42908627 (accessed on 22 August 2022). [CrossRef]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Vuolo, F.; D’Urso, G. Evaluation of Sentinel-2 Spectral Sampling for Radiative Transfer Model Based LAI Estimation of Wheat, Sugar Beet, and Maize. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 458–464. [Google Scholar] [CrossRef]
- Locherer, M.; Hank, T.; Danner, M.; Mauser, W. Retrieval of Seasonal Leaf Area Index from Simulated EnMAP Data through Optimized LUT-Based Inversion of the PROSAIL Model. Remote Sens. 2015, 7, 10321–10346. [Google Scholar] [CrossRef]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- Duveiller, G.; Weiss, M.; Baret, F.; Defourny, P. Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 2011, 115, 887–896. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, J.; Li, W.; Wang, Y.; Jiang, J.; Cheng, T.; Zhu, Y.; Cao, W.; Yao, X. Estimation of canopy water content for wheat through combining radiative transfer model and machine learning. Field Crops Res. 2023, 302, 109077. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Jay, S. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER; INRAE: Paris, France, 2016. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy. Remote Sens. 2017, 9, 726. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, 56–66. [Google Scholar] [CrossRef]
- Koppensteiner, L.J.; Kaul, H.-P.; Piepho, H.-P.; Barta, N.; Euteneuer, P.; Bernas, J.; Klimek-Kopyra, A.; Gronauer, A.; Neugschwandtner, R.W. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Eur. J. Agron. 2022, 140, 126591. [Google Scholar] [CrossRef]
- Bernas, J.; Koppensteiner, L.J.; Tichá, M.; Kaul, H.-P.; Klimek-Kopyra, A.; Euteneuer, P.; Moitzi, G.; Neugschwandtner, R.W. Optimal environmental design of nitrogen application rate for facultative wheat using life cycle assessment. Eur. J. Agron. 2023, 146, 126813. [Google Scholar] [CrossRef]
- Moitzi, G.; Koppensteiner, L.J.; Klimek-Kopyra, A.; Bernas, J.; Kaul, H.-P.; Wagentristl, H.; Euteneuer, P.; Neugschwandtner, R.W. Effects of sowing date and nitrogen applications on the energy efficiency of facultative wheat (Triticum aestivum L.) in a Pannonian environment. Heliyon 2024, 10, e37923. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Liebhard, P.; Kaul, H.-P.; Wagentristl, H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ. 2014, 60, 57–62. [Google Scholar] [CrossRef]
- Witzenberger, A.; Hack, H.; van den Boom, T. Erläuterungen zum BBCH-Dezimal-Code für die Entwicklungsstadien des Getreides—Mit Abbildungen [Commentary to the BBCH-decimal-code for growth stages of cereals—With images]. Gesunde Pflanz. 1989, 41, 384–388. (In German) [Google Scholar]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Hess, M.; Lancashire, P.D.; Schnock, U.; Stauss, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Kult. 2009, 61, 41–52. [Google Scholar] [CrossRef]
- Winkler, R.; Botterbrodt, S.; Rabe, E.; Lindhauer, M.G. Stickstoff-/Proteinbestimmung mit der Dumas-Methode in Getreide und Getreideprodukten [Nitrogen and protein determination using the Dumas method in cereal and cereal products]. Getreide Mehl Brot 2000, 54, 86–91. (In German) [Google Scholar]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Kuusk, A. The Hot Spot Effect in Plant Canopy Reflectance. In Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology; Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 139–159. [Google Scholar]
- Spitters, C.J.T.; Toussaint, H.A.J.M.; Goudriaan, J. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric. For. Meteorol. 1986, 38, 217–229. [Google Scholar] [CrossRef]
- Richter, K.; Vuolo, F.; D’Urso, G.; Palladino, M. Evaluation of near-surface soil water status through the inversion of soil-canopy radiative transfer models in the reflective optical domain. Int. J. Remote Sens. 2012, 33, 5473–5491. [Google Scholar] [CrossRef]
- Kong, W.P.; Huang, W.J.; Zhou, X.F.; Song, X.Y.; Casa, R. Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data. J. Appl. Remote Sens. 2016, 10, 026035. [Google Scholar] [CrossRef]
- Van Reeuwjik, L.P. Procedure for Soil Analysis, 6th ed.; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- SoilSpec4GG Open Soil Spectral Library Explorer. Soil Spectroscopy 4 Global Good. 2022. Available online: https://explorer.soilspectroscopy.org/ (accessed on 7 July 2022).
- Stanford University. CS231n Deep Learning for Computer Vision; Stanford University: Stanford, CA, USA, 2024; Available online: https://cs231n.github.io/neural-networks-1/ (accessed on 3 January 2025).
- ESA (European Space Agency). Sentinel-2 Spectral Response Functions (S2-SRF), Version: 3.2. 10 October 2023. Available online: https://sentinels.copernicus.eu/documents/d/sentinel/s2-srf_cope-gseg-eopg-tn-15-0007_3-2 (accessed on 7 January 2024).
- Akanbi, O.; Amiri, I.; Fazeldehkordi, E. Chapter 4—Feature Extraction. In A Machine-Learning Approach to Phishing Detection and Defense; Akanbi, O., Amiri, I., Fazeldehkordi, E., Eds.; Syngress: Rockland, MA, USA, 2015; pp. 45–54. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index —The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Piepho, H.P.; Büchse, A.; Emrich, K. A Hitchhiker’s Guide to Mixed Models for Randomized Experiments. J. Agron. Crop Sci. 2003, 189, 310–322. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observation. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnere, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by Venμs and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Zhang, C.; Pattey, E.; Liu, J.; Cai, H.; Shang, J.; Dong, T. Retrieving leaf and canopy water content of winter wheat using vegetation water indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 112–126. [Google Scholar] [CrossRef]
- Atzberger, C.; Jarmer, T.; Schlerf, M.; Kötz, B.; Werner, W. Retrieval of wheat bio-physical attributes from hyperspectral data and SAILH+PROSPECT radiative transfer model. In Proceedings of the 3rd EARSeL Workshop Imaging Spectroscopy, Oberpfaffenhof, Germany, 13–16 May 2003. [Google Scholar]
- Vuolo, F.; Zółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Pan, H.; Chen, Z.; Ren, J.; Li, H.; Wu, S. Modeling winter wheat leaf area index and canopy water content with three different approaches using sentinel-2 multispectral instrument data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 482–492. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q. Predicting vegetation water content in wheat using normalized difference water indices derived from ground measurements. J. Plant Res. 2009, 122, 317–326. [Google Scholar] [CrossRef]
- Simpson, R.J.; Lambers, H.; Dalling, M.J. Nitrogen Redistribution during Grain Growth in Wheat (Triticum aestivum L.): IV. Development of a Quantitative Model of the Translocation of Nitrogen to the Grain. Plant Physiol. 1983, 71, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J.; Holben, B.N.; Elgin, J.H.; McMurtrey, J.E. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens. Environ. 1981, 11, 171–189. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Res. 2008, 106, 94–103. [Google Scholar] [CrossRef]
- Fabbri, C.; Mancini, M.; dalla Marta, A.; Orlandini, S.; Napoli, M. Integrating satellite data with a nitrogen nutrition curve for precision top-dress fertilization of durum wheat. Eur. J. Agron. 2020, 120, 126148. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Verhoef, W.; Jia, L.; Xiao, Q.; Su, Z. Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1808–1822. [Google Scholar] [CrossRef]
- van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef]
- Holzinger, A. Explainable AI (ex-AI). Inform. Spektrum 2018, 41, 138–143. [Google Scholar] [CrossRef]
Radiative Transfer Model PROSPECT | |||
---|---|---|---|
Parameter | Symbol | Unit | Wheat-Specific Ranges |
Leaf structure index | N | unitless | 1.0 to 2.5 |
Chlorophyll a + b content | Cab | µg cm−2 | 0 to 80 |
Carotenoid content | Ccx | µg cm−2 | 1 to 24 |
Brown pigment content | Cbp | unitless | 0 to 1 |
Leaf mass per area | LMA | g cm−2 | 0.001 to 0.02 |
Equivalent water thickness | EWT | g cm−2 | 0.001 to 0.05 |
Radiative transfer model SAIL | |||
Parameter | Symbol | Unit | Wheat-specific ranges |
Leaf area index | LAI | m2 m−2 | 0 to 8 |
Average leaf inclination angle | ALIA | degrees | 20 to 90 |
Hot-spot parameter | Hot | m m−1 | 0.01 to 0.5 |
Fraction of diffuse illumination | skyl | % | 23 |
Sun zenith angle | SZA | degrees | 0 to 90 |
Observer zenith angle | OZA | degrees | 0 to 90 |
Relative azimuth angle | rAA | degrees | 0 to 90 |
Soil reflectance | ρsoil | % | * |
Soil brightness factor | αsoil | unitless | 0 to 1 |
Spectral Resolution | Background Correction | N | Cab | Ccx | Cbp | EWT | LMA | αsoil | LAI | ALIA | Hot |
---|---|---|---|---|---|---|---|---|---|---|---|
Hyperspectral | Included | 0.546 | 0.947 | 0.885 | 0.922 | 0.906 | 0.770 | − | 0.885 | 0.892 | 0.108 |
Hyperspectral | Excluded | 0.605 | 0.953 | 0.936 | 0.936 | 0.881 | 0.590 | 0.320 | 0.872 | 0.928 | 0.215 |
Multispectral | Included | 0.227 | 0.891 | 0.607 | 0.806 | 0.699 | 0.556 | − | 0.848 | 0.847 | 0.030 |
Multispectral | Excluded | 0.305 | 0.900 | 0.740 | 0.839 | 0.777 | 0.439 | 0.260 | 0.808 | 0.834 | 0.022 |
Date | Autumn-Sown Wheat, 2019/20 Season | Spring-Sown Wheat, 2019/20 Season | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BBCH | PAI | NY | CWC | AGDM | BBCH | PAI | NY | CWC | AGDM | |||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||
9 March 2020 | 23 | 0.641 | 0.051 | 2.20 | 0.10 | 124.9 | 14.1 | 52.5 | 1.5 | |||||||||||
23 March 2020 | 24 | 1.050 | 0.261 | 3.31 | 0.59 | 265.6 | 64.9 | 85.6 | 19.3 | |||||||||||
6 April 2020 | 30 | 1.318 | 0.236 | 3.95 | 1.02 | 349.6 | 82.1 | 141.6 | 24.5 | 11 | 0.037 | 0.006 | 0.19 | 0.03 | 7.4 | 1.8 | 4.0 | 0.6 | ||
20 April 2020 | 32 | 2.447 | 0.439 | 6.58 | 1.70 | 801.6 | 165.0 | 285.1 | 43.0 | 13 | 0.110 | 0.023 | 0.55 | 0.11 | 32.1 | 8.3 | 12.8 | 2.6 | ||
4 May 2020 | 45 | 2.354 | 0.463 | 7.65 | 2.08 | 1112.0 | 217.7 | 503.1 | 72.3 | 30 | 0.342 | 0.101 | 1.38 | 0.35 | 87.8 | 30.0 | 33.1 | 8.4 | ||
17 May 2020 | 59 | 2.298 | 0.550 | 9.42 | 3.15 | 1198.4 | 260.6 | 691.1 | 82.2 | 37 | 0.809 | 0.189 | 3.62 | 0.71 | 272.7 | 72.3 | 107.0 | 20.8 | ||
1 June 2020 | 77 | 2.011 | 0.534 | 9.14 | 3.98 | 1224.0 | 256.1 | 794.3 | 123.5 | 51 | 1.349 | 0.238 | 5.97 | 1.29 | 774.3 | 138.5 | 257.3 | 37.6 | ||
15 June 2020 | 85 | 1.986 | 0.405 | 11.65 | 3.78 | 1296.5 | 276.5 | 1050.7 | 178.9 | 71 | 1.490 | 0.333 | 8.88 | 2.33 | 986.6 | 228.4 | 466.0 | 67.0 | ||
6 July 2020 | 89 | 1.535 | 0.283 | 10.74 | 3.70 | 106.7 | 19.2 | 1048.8 | 184.6 | 85 | 1.033 | 0.169 | 10.93 | 1.94 | 688.3 | 155.8 | 685.8 | 79.1 | ||
20 July 2020 | 89 | 1.034 | 0.160 | 9.94 | 2.05 | 73.1 | 7.8 | 725.1 | 88.9 | |||||||||||
Date | Autumn-sown wheat, 2020/21 Season | Spring-sown wheat, 2020/21 Season | ||||||||||||||||||
BBCH | PAI | NY | CWC | AGDM | BBCH | PAI | NY | CWC | AGDM | |||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||
9 March 2021 | 21 | 0.162 | 0.031 | 0.67 | 0.12 | 33.9 | 5.7 | 14.9 | 2.5 | |||||||||||
23 March 2021 | 22 | 0.224 | 0.035 | 0.90 | 0.14 | 40.2 | 7.0 | 21.1 | 2.9 | |||||||||||
6 April 2021 | 23 | 0.508 | 0.106 | 1.64 | 0.33 | 121.4 | 28.1 | 39.4 | 7.6 | 10 | 0.043 | 0.010 | 0.13 | 0.03 | 9.2 | 2.1 | 2.4 | 0.5 | ||
20 April 2021 | 30 | 0.795 | 0.106 | 2.76 | 0.42 | 198.4 | 31.0 | 67.5 | 8.9 | 12 | 0.074 | 0.016 | 0.31 | 0.05 | 14.8 | 4.1 | 6.4 | 1.2 | ||
2 May 2021 | 31 | 1.596 | 0.350 | 5.15 | 1.39 | 498.8 | 102.0 | 136.8 | 22.3 | 21 | 0.262 | 0.081 | 0.99 | 0.28 | 51.0 | 19.3 | 18.1 | 4.5 | ||
18 May 2021 | 41 | 3.116 | 0.598 | 9.59 | 2.75 | 1205.0 | 254.1 | 343.1 | 39.8 | 31 | 1.154 | 0.242 | 3.76 | 0.84 | 253.5 | 80.4 | 72.4 | 14.6 | ||
31 May 2021 | 57 | 3.751 | 0.962 | 11.42 | 3.69 | 2099.5 | 524.3 | 600.3 | 94.3 | 33 | 2.325 | 0.556 | 7.98 | 2.15 | 928.2 | 242.6 | 206.5 | 41.4 | ||
15 June 2021 | 75 | 3.204 | 1.003 | 13.82 | 4.47 | 1752.0 | 408.6 | 928.9 | 146.7 | 56 | 3.583 | 0.837 | 10.32 | 2.77 | 1608.2 | 331.8 | 497.2 | 79.4 | ||
27 June 2021 | 85 | 2.284 | 0.632 | 12.69 | 4.61 | 839.3 | 190.6 | 1144.2 | 242.5 | 75 | 2.460 | 0.510 | 11.07 | 2.77 | 1099.9 | 245.4 | 790.8 | 111.1 | ||
13 July 2021 | 89 | 2.187 | 0.568 | 14.21 | 4.53 | 141.9 | 26.8 | 1151.9 | 213.6 | 85 | 2.520 | 0.467 | 11.73 | 2.67 | 311.9 | 91.4 | 931.2 | 131.4 | ||
26 July 2021 | 89 | 2.609 | 0.336 | 11.95 | 2.48 | 106.0 | 11.6 | 887.4 | 92.3 |
Model | Spectral Resolution | Background Correction | Model Training (2020/21 Season) | Model Testing (2019/20 Season) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Regression Type | a | b | c | z | R2 | a | b | R2 | RRMSE | |||||
Plant area index (m2 m−2), before anthesis | ||||||||||||||
NDVI | − | − | Exponential | 0.0318 | 5.07 | 0.915 | −0.049 | 1.112 | 0.893 | 22.4 | ||||
NDRE | − | − | Linear | −1.0276 | 27.1640 | 0.964 | −0.204 | 1.309 | 0.903 | 31.2 | ||||
LAI (RTMI) | Hyperspectral | Included | Quadratic | 0.0595 | 0.3723 | 0.0881 | 0.955 | 0.108 | 1.032 | 0.930 | 17.9 | |||
LAI (RTMI) | Hyperspectral | Excluded | Quadratic | −0.3313 | 0.2390 | 0.0917 | 0.898 | 0.270 | 1.231 | 0.852 | 46.9 | |||
LAI (RTMI) | Multispectral | Included | Quadratic | 0.4115 | 0.4479 | 0.0305 | 0.922 | 0.134 | 0.826 | 0.792 | 24.4 | |||
LAI (RTMI) | Multispectral | Excluded | Quadratic | −0.0034 | 0.1778 | 0.1028 | 0.869 | 0.534 | 0.783 | 0.521 | 53.1 | |||
Nitrogen yield (g m−2), before anthesis | ||||||||||||||
NDVI | − | − | Exponential | 0.127 | 4.791 | 0.920 | 0.356 | 0.889 | 0.747 | 31.5 | ||||
NDRE | − | − | Linear | −3.076 | 83.888 | 0.970 | −0.513 | 1.144 | 0.904 | 23.0 | ||||
LAI × Cab (RTMI) | Hyperspectral | Included | Quadratic | 0.306 | 2.292 | 0.132 | 0.961 | 0.524 | 0.871 | 0.908 | 14.4 | |||
LAI × Cab (RTMI) | Hyperspectral | Excluded | Linear | −0.118 | 3.061 | 0.911 | −0.776 | 0.916 | 0.788 | 35.0 | ||||
LAI × Cab (RTMI) | Multispectral | Included | Quadratic | 1.440 | 2.404 | 0.186 | 0.950 | 0.553 | 0.756 | 0.740 | 28.2 | |||
LAI × Cab (RTMI) | Multispectral | Excluded | Linear | −0.143 | 3.635 | 0.943 | 0.096 | 0.992 | 0.766 | 29.8 | ||||
Canopy water content (g m−2), before anthesis | ||||||||||||||
NDVI | − | − | Exponential | 4.578 | 6.17 | 0.826 | 76.30 | 0.78 | 0.664 | 40.8 | ||||
NDRE | − | − | Quadratic | −69.214 | −152.890 | 61,573.509962 | 0.929 | −22.07 | 1.12 | 0.782 | 32.9 | |||
LAI × EWT (RTMI) | Hyperspectral | Included | Quadratic | −50.943 | 0.544 | 0.000219 | 0.944 | −40.93 | 1.15 | 0.967 | 17.0 | |||
LAI × EWT (RTMI) | Hyperspectral | Excluded | Linear | −167.070 | 1.341 | 0.920 | 300.04 | 1.00 | 0.825 | 62.6 | ||||
LAI × EWT (RTMI) | Multispectral | Included | Quadratic | 62.502 | 0.404 | 0.000123 | 0.901 | 0.72 | −2.58 | 0.818 | 31.5 | |||
LAI × EWT (RTMI) | Multispectral | Excluded | Quadratic | –33.379 | 0.316 | 0.000178 | 0.850 | 208.78 | 0.72 | 0.738 | 40.9 |
Model | Spectral Resolution | Background Correction | Model Training (2020/21 Season) | Model Testing (2019/20 Season) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Regression Type | a | b | c | z | R2 | a | b | R2 | RRMSE | |||||
Plant area index (m2 m−2), all developmental stages | ||||||||||||||
NDVI | − | − | Exponential | 0.1629 | 3.1927 | 0.485 | 0.177 | 0.936 | 0.664 | 31.2 | ||||
NDRE | − | − | Quadratic | −0.4831 | 28.2480 | −32.7020 | 0.670 | 0.318 | 1.046 | 0.704 | 41.3 | |||
LAI (RTMI) | Hyperspectral | Included | Quadratic | 0.0095 | 0.5158 | 0.0585 | 0.922 | 0.280 | 1.052 | 0.845 | 27.7 | |||
LAI (RTMI) | Hyperspectral | Excluded | Linear | −0.7270 | 0.7114 | 0.778 | 0.677 | 0.926 | 0.695 | 46.1 | ||||
LAI (RTMI) | Multispectral | Included | Quadratic | 0.6204 | 0.8408 | −0.0508 | 0.830 | 0.559 | 0.898 | 0.723 | 39.9 | |||
LAI (RTMI) | Multispectral | Excluded | Quadratic | −0.0237 | 0.2212 | 0.0879 | 0.867 | 0.616 | 0.695 | 0.496 | 40.1 | |||
Canopy water content (g m−2), all developmental stages | ||||||||||||||
NDVI | − | − | Exponential | 13.855 | 5.053 | 0.756 | 117.54 | 0.67 | 0.566 | 42.7 | ||||
NDRE | − | − | Linear | −526.450 | 12,335.294 | 0.891 | 14.27 | 0.96 | 0.710 | 39.0 | ||||
LAI × EWT (RTMI) | Hyperspectral | Included | Quadratic | 28.547 | 0.197 | 0.000363 | 0.927 | 77.87 | 0.89 | 0.884 | 20.0 | |||
LAI × EWT (RTMI) | Hyperspectral | Excluded | Linear | −168.710 | 1.189 | 0.785 | 340.33 | 0.80 | 0.739 | 44.9 | ||||
LAI × EWT (RTMI) | Multispectral | Included | Linear | 35.600 | 0.731 | 0.813 | 132.28 | 0.65 | 0.637 | 35.7 | ||||
LAI × EWT (RTMI) | Multispectral | Excluded | Quadratic | 29.498 | 0.017 | 0.000293 | 0.842 | 121.52 | 0.78 | 0.806 | 33.3 |
Model | Model Training (2020/21 Season) | Model Testing (2019/20 Season) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Regression Type | a | b | c | R2 | a | b | R2 | RRMSE | |||
PAD (measured) | Linear | 11.80 | 5.24 | 0.972 | −19.60 | 0.92 | 0.914 | 18.1 | |||
NDVI integral | Quadratic | −26.87 | 6.23 | 0.13 | 0.969 | −77.38 | 1.27 | 0.927 | 24.3 | ||
LAD (RTMI) | Linear | –16.78 | 3.88 | 0.965 | –21.29 | 1.12 | 0.960 | 13.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koppensteiner, L.J.; Kaul, H.-P.; Raubitzek, S.; Weihs, P.; Euteneuer, P.; Bernas, J.; Moitzi, G.; Neubauer, T.; Klimek-Kopyra, A.; Barta, N.; et al. Estimating Wheat Traits Using Artificial Neural Network-Based Radiative Transfer Model Inversion. Remote Sens. 2025, 17, 1904. https://doi.org/10.3390/rs17111904
Koppensteiner LJ, Kaul H-P, Raubitzek S, Weihs P, Euteneuer P, Bernas J, Moitzi G, Neubauer T, Klimek-Kopyra A, Barta N, et al. Estimating Wheat Traits Using Artificial Neural Network-Based Radiative Transfer Model Inversion. Remote Sensing. 2025; 17(11):1904. https://doi.org/10.3390/rs17111904
Chicago/Turabian StyleKoppensteiner, Lukas J., Hans-Peter Kaul, Sebastian Raubitzek, Philipp Weihs, Pia Euteneuer, Jaroslav Bernas, Gerhard Moitzi, Thomas Neubauer, Agnieszka Klimek-Kopyra, Norbert Barta, and et al. 2025. "Estimating Wheat Traits Using Artificial Neural Network-Based Radiative Transfer Model Inversion" Remote Sensing 17, no. 11: 1904. https://doi.org/10.3390/rs17111904
APA StyleKoppensteiner, L. J., Kaul, H.-P., Raubitzek, S., Weihs, P., Euteneuer, P., Bernas, J., Moitzi, G., Neubauer, T., Klimek-Kopyra, A., Barta, N., & Neugschwandtner, R. W. (2025). Estimating Wheat Traits Using Artificial Neural Network-Based Radiative Transfer Model Inversion. Remote Sensing, 17(11), 1904. https://doi.org/10.3390/rs17111904