A Multi-Path Feature Extraction and Transformer Feature Enhancement DEM Super-Resolution Reconstruction Network
Abstract
:1. Introduction
- An SR reconstruction network of DEMs based on multi-path feature extraction and transformer feature enhancement is proposed. Experiments show that this method is superior to the existing SR method and can reconstruct HR DEM with higher accuracy.
- A multipath feature extraction module (MPFEM) is proposed, which contains multi-path residual blocks (MPRBs), and utilizes multipath extraction, an extended convolution layer and a shuffle attention (SA) layer to enhance the interactivity between spatial information and semantic information.
- A transformer-based feature enhancement module is proposed, which is composed of multiple encoders and decoders, and processes the output of each feature extraction module, thus promoting the blending of high-dimensional features and low-dimensional features and improving network performance.
2. Related Work
2.1. Image SR Reconstruction Based on CNNs
2.2. DEM SR Reconstruction
2.3. Multi-Scale Feature Extraction and Fusion Module
2.4. Application of Transformers in SR Reconstruction
3. Method
3.1. Network Architecture
3.1.1. Multi-Path Feature Extraction Module
3.1.2. Transformer Feature Enhancement Module
3.2. Loss Function
4. Results
4.1. Experiment Preparation
4.2. Evaluation Metrics
4.3. Analysis of Image Quality Metrics During Training Process
4.4. Comparative Experiment
4.5. Ablation Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Gao, F.; Li, W.; Zhang, P.; Yuan, A.; Zhong, X.; Zhai, Y.; Yang, Y. A high-resolution satellite DEM filtering method assisted with building segmentation. Photogramm. Eng. Remote Sens. 2021, 87, 421–430. [Google Scholar] [CrossRef]
- Dongchen, E.; Zhou, C.; Liao, M. Application of SAR interferometry on DEM generation of the Grove Mountains. Photogramm. Eng. Remote Sens. 2004, 70, 1145–1149. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Z.; Luo, Y.; Zhang, Y.; Wu, J.; Peng, Z. A CNN-based subpixel level DSM generation approach via single image super-resolution. Photogramm. Eng. Remote Sens. 2019, 85, 765–775. [Google Scholar] [CrossRef]
- Boucher, A.; Kyriakidis, P.C. Integrating fine scale information in super-resolution land-cover mapping. Photogramm. Eng. Remote Sens. 2007, 73, 913–921. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II. pp. 391–407. [Google Scholar]
- Xu, L.; Ren, J.S.J.; Liu, C.; Jia, J. Deep Convolutional Neural Network for Image Deconvolution. Adv. Neural Inf. Process. Syst. 2014, 27, 1905–1914. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Reco Gnition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Reco Gnition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xu, Z.K.; Wang, X.W.; Chen, Z.X.; Xiong, D.P.; Ding, M.Y.; Hou, W.G. Nonlocal similarity based DEM super resolution. Isprs J. Photogramm. Remote Sens. 2015, 110, 48–54. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Yue, L.; Shen, H.; Yuan, Q.; Zhang, L. Fusion of multi-scale DEMs using a regularized super-resolution method. Int. J. Geogr. Inf. Sci. 2015, 29, 2095–2120. [Google Scholar] [CrossRef]
- Argudo, O.; Chica, A.; Andujar, C. Terrain super-resolution through aerial imagery and fully convolutional networks. Comput. Graph. Forum 2018, 37, 101–110. [Google Scholar] [CrossRef]
- Zhang, R.; Bian, S.; Li, H. RSPCN: Super-resolution of digital elevation model based on recursive sub-pixel convolutional neural networks. ISPRS Int. J. Geo-Inf. 2020, 10, 501. [Google Scholar] [CrossRef]
- Zhou, A.; Chen, Y.; Wilson, J.P.; Su, H.; Xiong, Z.; Cheng, Q. An enhanced double-filter deep residual neural network for generating super resolution DEMs. Remote Sens. 2021, 13, 3089. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Q.; Wang, H.; Yao, C.; Chen, C.; Cheng, L.; Li, Z. A DEM super-resolution reconstruction network combining internal and external learning. Remote Sens. 2022, 14, 2181. [Google Scholar] [CrossRef]
- Han, X.; Ma, X.; Li, H.; Chen, Z. A global-information-constrained deep learning network for digital elevation model super-resolution. Remote Sens. 2023, 15, 305. [Google Scholar] [CrossRef]
- Yao, S.; Cheng, Y.; Yang, F.; Mozerov, M.G. A continuous digital elevation representation model for DEM super-resolution. ISPRS J. Photogramm. Remote Sens. 2024, 208, 1–13. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building extraction based on U-Net with an attention block and multiple losses. Remote Sens. 2020, 12, 1400. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. In Readings in Computer Vision; Morgan Kaufmann: Burlington, MA, USA, 1987; pp. 671–679. [Google Scholar]
- Lindeberg, T. Scale-space theory: A basic tool for analyzing structures at different scales. J. Appl. Stat. 1994, 21, 225–270. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 517–532. [Google Scholar]
- Qin, J.; Huang, Y.; Wen, W. Multi-scale feature fusion residual network for single image super-resolution. Neurocomputing 2020, 379, 334–342. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, J.; Liang, Z.; Liu, X.; Shen, H.T. Multi-Branch Networks for Video Super-Resolution with Dynamic Reconstruction Strategy. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3954–3966. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Li, J. Multi-scale fractal residual network for image super-resolution. Appl. Intell. 2021, 51, 1845–1856. [Google Scholar] [CrossRef]
- Lv, X.; Wang, C.; Fan, X.; Leng, Q.; Jiang, X. A novel image super-resolution algorithm based on multi-scale dense recursive fusion network. Neurocomputing 2022, 489, 98–111. [Google Scholar] [CrossRef]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning texture transformer network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5791–5800. [Google Scholar]
- Lu, Z.; Liu, H.; Li, J.; Zhang, L. Efficient transformer for single image super-resolution. arXiv 2021, arXiv:2108.11084. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part I 13. pp. 818–833. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Lei, S.; Shi, Z.; Mo, W. Transformer-based multistage enhancement for remote sensing image super-resolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Lei Ba, J.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Song, X.; Liu, W.; Liang, L.; Shi, W.; Xie, G.; Lu, X.; Hei, X. Image super-resolution with multi-scale fractal residual attention network. Comput. Graph. 2023, 113, 21–31. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adver sarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Reco Gnition, Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- Rakotonirina, N.C.; Rasoanaivo, A. ESRGAN plus: Further Improving Enhanced Super-Resolution Generative Adversarial Network. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA; pp. 3637–3641. [Google Scholar]
- Zhang, Y.; Yu, W.; Zhu, D. Terrain feature-aware deep learning network for digital elevation model superresolution. ISPRS J. Photogramm. Remote Sens. 2022, 189, 143–162. [Google Scholar] [CrossRef]
Method | Elevation RMSE | Slope RMSE | Elevation MAE | Slope MAE | SSIM |
---|---|---|---|---|---|
Bicubic | 1.83 | 0.1442 | 1.18 | 0.0973 | 0.9376 |
EDSR | 1.67 | 0.1492 | 1.15 | 0.1012 | 0.9359 |
SRCNN | 1.64 | 0.1495 | 1.13 | 0.1047 | 0.9236 |
MFRAN | 1.60 | 0.1438 | 1.10 | 0.0968 | 0.9315 |
SRGAN | 3.61 | 0.1486 | 2.80 | 0.0978 | 0.9309 |
ESRGAN | 2.23 | 0.1488 | 1.52 | 0.0980 | 0.9374 |
Tfasr | 1.58 | 0.1441 | 1.12 | 0.0961 | 0.9347 |
Ours |
MPFEM | Transformer | Loss | Elevation RMSE | Slope RMSE | Elevation MAE | Slope MAE | SSIM |
---|---|---|---|---|---|---|---|
MAE | 2.32 | 0.1957 | 1.92 | 0.1097 | 0.9213 | ||
✓ | MAE | 1.96 | 0.1923 | 1.73 | 0.0989 | 0.9217 | |
✓ | RMSE | 1.74 | 0.1807 | 1.55 | 0.0968 | 0.9297 | |
✓ | MAE | 2.21 | 0.1623 | 1.89 | 0.1083 | 0.9235 | |
✓ | RMSE | 1.79 | 0.1576 | 1.68 | 0.0983 | 0.9360 | |
✓ | ✓ | MAE | 1.55 | 0.1617 | 1.10 | 0.0962 | 0.9374 |
✓ | ✓ | RMSE |
Basic-blk | Multi-Path | Elevation RMSE | Slope RMSE | Elevation MAE | Slope MAE | SSIM |
---|---|---|---|---|---|---|
Res-block | 2 | 2.03 | 0.1541 | 1.65 | 0.1047 | 0.9286 |
Res-block | 3 | 0.1432 | 1.14 | 0.0952 | 0.9352 | |
Res-block | 4 | 1.63 | 0.1450 | 1.20 | 0.0965 | 0.9371 |
RDB | 2 | 2.16 | 0.1466 | 1.87 | 0.0953 | 0.9293 |
RDB | 3 | 2.08 | 0.1452 | 1.67 | 0.0968 | 0.9385 |
RDB | 4 | 2.10 | 0.1539 | 1.73 | 0.1031 | 0.9347 |
DRSAB | 2 | 1.88 | 0.1472 | 1.50 | 0.0985 | 0.9352 |
DRSAB | 3 | |||||
DRSAB | 4 | 1.73 | 0.1452 | 1.27 | 0.0969 | 0.9340 |
Encode_DEPTH | Decode_DEPTH | Elevation RMSE | Slope RMSE | Elevation MAE | Slope MAE | SSIM |
---|---|---|---|---|---|---|
2 | 1 | 1.79 | 0.1462 | 1.32 | 0.0997 | 0.924 |
2 | 2 | 1.75 | 0.1457 | 1.28 | 0.0977 | 0.9248 |
2 | 3 | 1.98 | 0.1494 | 1.55 | 0.1002 | 0.9306 |
2 | 4 | 2.57 | 0.1486 | 2.16 | 0.0996 | 0.9316 |
4 | 1 | 1.83 | 0.1457 | 1.41 | 0.0996 | 0.9302 |
4 | 2 | 2.14 | 0.1476 | 1.72 | 0.0986 | 0.9287 |
4 | 3 | 2.17 | 0.1544 | 1.69 | 0.1036 | 0.928 |
4 | 4 | 1.96 | 0.1720 | 1.44 | 0.1181 | 0.9184 |
6 | 1 | 2.02 | 0.1466 | 1.55 | 0.0973 | 0.9330 |
6 | 2 | 1.75 | 0.1513 | 1.28 | 0.1015 | 0.9295 |
6 | 3 | 2.09 | 0.1790 | 1.60 | 0.1233 | 0.9133 |
6 | 4 | 1.85 | 0.1573 | 1.36 | 0.1065 | 0.9284 |
8 | 1 | 1.81 | 0.1525 | 1.29 | 0.1019 | 0.9274 |
8 | 2 | |||||
8 | 3 | 2.30 | 0.1463 | 1.90 | 0.0979 | 0.9258 |
8 | 4 | 1.89 | 0.1550 | 1.45 | 0.1041 | 0.9320 |
Method | Elevation RMSE | Slope RMSE | Elevation MAE | Slope MAE | SSIM |
---|---|---|---|---|---|
Bicubic | 2.61 | 0.2742 | 1.22 | 0.4138 | 9.4041 |
EDSR | 2.41 | 0.4488 | 1.90 | 0.3819 | 9.0948 |
SRCNN | 2.22 | 0.2366 | 1.44 | 0.1500 | 9.1265 |
MFRAN | 2.15 | 0.2427 | 1.48 | 0.1554 | 9.1821 |
SRGAN | 4.24 | 0.2383 | 3.99 | 0.1462 | 8.0670 |
ESRGAN | 3.10 | 0.2277 | 2.55 | 0.1516 | 7.8792 |
Tfasr | 2.14 | 0.2374 | 1.28 | 0.1477 | 9.6183 |
Ours |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Xiong, F.; Huang, Y.; Zhang, Z.; Zhang, J. A Multi-Path Feature Extraction and Transformer Feature Enhancement DEM Super-Resolution Reconstruction Network. Remote Sens. 2025, 17, 1737. https://doi.org/10.3390/rs17101737
Guo M, Xiong F, Huang Y, Zhang Z, Zhang J. A Multi-Path Feature Extraction and Transformer Feature Enhancement DEM Super-Resolution Reconstruction Network. Remote Sensing. 2025; 17(10):1737. https://doi.org/10.3390/rs17101737
Chicago/Turabian StyleGuo, Mingqiang, Feng Xiong, Ying Huang, Zhizheng Zhang, and Jiaming Zhang. 2025. "A Multi-Path Feature Extraction and Transformer Feature Enhancement DEM Super-Resolution Reconstruction Network" Remote Sensing 17, no. 10: 1737. https://doi.org/10.3390/rs17101737
APA StyleGuo, M., Xiong, F., Huang, Y., Zhang, Z., & Zhang, J. (2025). A Multi-Path Feature Extraction and Transformer Feature Enhancement DEM Super-Resolution Reconstruction Network. Remote Sensing, 17(10), 1737. https://doi.org/10.3390/rs17101737