Enhancing Aquifer Reliability and Resilience Assessment in Data-Scarce Regions Using Satellite Data: Application to the Chao Phraya River Basin
Abstract
:1. Introduction
- (a)
- Validate the accuracy of GRACE-derived GWSA (i.e., ) against in situ data-based GWSA (i.e., ), ensuring the reliability of the datasets before their subsequent application.
- (b)
- Examine the consistency of temporal trends between and .
- (c)
- Assess GWSA fluctuations.
- (d)
- Conduct a thorough analysis of aquifer resilience and reliability using the GGDI.
2. Data Description
2.1. Study Area
2.2. Datasets
2.2.1. GRACE
2.2.2. GLDAS
2.2.3. In Situ Data
3. Methods
3.1. Methodological Flow
3.2. GRACE-Derived GWSA
3.3. In Situ Data-Derived GWSA
3.4. Evaluation Metrics
3.5. GRACE Groundwater Drought Index (GGDI)
- is the average groundwater storage anomaly for month i;
- is the groundwater storage anomaly for the jth year in month i;
- ni is the number of years with available GRACE data for month iii (in our case, 15 years from 2002 to 2017).
3.6. Aquifer Reliability and Resilience
4. Results
4.1. Validation of GRACE-Derived GWSA
4.2. Trend of GWSA
4.3. Fluctuation of GWSA
4.4. Aquifer Reliability and Resiliency
5. Limitations and Future Work
6. Conclusions
- Validation of GRACE-derived GWSA: Our analysis demonstrated a strong correlation (over 0.82) between remote sensing data and in situ observations, validating the use of GRACE and GLDAS for monitoring groundwater dynamics across the basin’s eight sub-basins.
- Trend Consistency: We noted a significant declining trend in groundwater storage, highlighting the urgent need for policy measures such as reducing water demand, promoting less water-intensive agriculture, minimizing groundwater dependence, and enhancing groundwater recharge efforts.
- Assessment of Fluctuations: The analysis captured the impact of hydroclimatic extremes on the basin, particularly during the major flood of 2011 and the drought of 2015, revealing multiyear phases of depletion and recovery from 2002 to 2017.
- Analysis of Aquifer Resilience and Reliability: Using the GRACE Groundwater Drought Index, we found alarming resilience and reliability scores, with most sub-basins exhibiting values below 30%. This highlights the vulnerability of the region’s groundwater systems to hydrological stress.
- Future Prospects Using High-Resolution Information: To increase the resolution and applicability of the current model, future studies should make use of higher-resolution datasets. Among these are high-resolution remote sensing tools (e.g., Sentinel, SMAP) and hydrogeophysical exploration techniques for subsurface characterization [77]. Regionally calibrated groundwater level data and socioeconomic water use data. The integration of these datasets will reduce uncertainty, facilitate the estimation of aquifer properties, and more accurately account for human impacts on groundwater systems [78].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griebler, C.; Avramov, M. Groundwater Ecosystem Services: A Review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef]
- Sokneth, L.; Mohanasundaram, S.; Shrestha, S.; Babel, M.S.; Virdis, S.G.P. Evaluating Aquifer Stress and Resilience with GRACE Information at Different Spatial Scales in Cambodia. Hydrogeol. J. 2022, 30, 2359–2377. [Google Scholar] [CrossRef] [PubMed]
- Zektser, I.S.; Loaiciga, H.A. Groundwater Fluxes in the Global Hydrologic Cycle: Past, Present and Future. J. Hydrol. 1993, 144, 405–427. [Google Scholar] [CrossRef]
- Goswami, L.; Tejas Namboodiri, M.M.; Vinoth Kumar, R.; Pakshirajan, K.; Pugazhenthi, G. Biodiesel Production Potential of Oleaginous Rhodococcus Opacus Grown on Biomass Gasification Wastewater. Renew. Energy 2017, 105, 400–406. [Google Scholar] [CrossRef]
- Giordano, M. Global Groundwater? Issues and Solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Sathe, S.S.; Goswami, L.; Mahanta, C. Arsenic Reduction and Mobilization Cycle via Microbial Activities Prevailing in the Holocene Aquifers of Brahmaputra Flood Plain. Groundw. Sustain. Dev. 2021, 13, 100578. [Google Scholar] [CrossRef]
- Begum, W.; Goswami, L.; Sharma, B.B.; Kushwaha, A. Assessment of Urban River Pollution Using the Water Quality Index and Macro-Invertebrate Community Index. Environ. Dev. Sustain. 2023, 25, 8877–8902. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Rodell, M.; Li, B.; Saha, D.; Mukherjee, A. Spatio-Temporal Variability of Groundwater Storage in India. J. Hydrol. 2017, 544, 428–437. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Müller Schmied, H.; Van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global Models Underestimate Large Decadal Declining and Rising Water Storage Trends Relative to GRACE Satellite Data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef]
- Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater Storage Changes: Present Status from GRACE Observations. Surv. Geophys. 2016, 37, 397–417. [Google Scholar] [CrossRef]
- Sharma, Y.; Aggarwal, A.; Singh, J. Development of Flow Duration Curves and Eco-Flow Metrics for the Tawi River Basin—(Jammu, India). Int. J. Adv. Remote Sens. GIS 2019, 8, 3114–3125. [Google Scholar] [CrossRef]
- Bremard, T. Monitoring Land Subsidence: The Challenges of Producing Knowledge and Groundwater Management Indicators in the Bangkok Metropolitan Region, Thailand. Sustainability 2022, 14, 10593. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S. Identifying Climate-Induced Groundwater Depletion in GRACE Observations. Sci. Rep. 2019, 9, 4124. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results: GRACE MISSION OVERVIEW AND EARLY RESULTS. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Castellazzi, P.; Longuevergne, L.; Martel, R.; Rivera, A.; Brouard, C.; Chaussard, E. Quantitative Mapping of Groundwater Depletion at the Water Management Scale Using a Combined GRACE/InSAR Approach. Remote Sens. Environ. 2018, 205, 408–418. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K. New Spectro-Spatial Downscaling Approach for Terrestrial and Groundwater Storage Variations Estimated by GRACE Models. J. Hydrol. 2022, 615, 128635. [Google Scholar] [CrossRef]
- Beaudoing, H.; Rodell, M.; NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 Monthly 1.0 × 1.0 Degree; Version 2.1. 2020. Available online: https://data.nasa.gov/dataset/gldas-noah-land-surface-model-l4-monthly-1-0-x-1-0-degree-early-product-v2-1-gldas-noah10--e0459 (accessed on 15 January 2022).
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J. Evaluation of Groundwater Sustainability in the Arid Hexi Corridor of Northwestern China, Using GRACE, GLDAS and Measured Groundwater Data Products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, B.; Yao, Y.; Yin, J.; Wang, H.; Ran, Q. Jointly Using the GLDAS 2.2 Model and GRACE to Study the Severe Yangtze Flooding of 2020. J. Hydrol. 2022, 610, 127927. [Google Scholar] [CrossRef]
- Heydarizad, M.; Pumijumnong, N.; Mansourian, D.; Anbaran, E.D.; Minaei, M. The Deterioration of Groundwater Quality by Seawater Intrusion in the Chao Phraya River Basin, Thailand. Environ. Monit. Assess. 2023, 195, 424. [Google Scholar] [CrossRef] [PubMed]
- Seeboonruang, U. Wavelet Relationship between Climate Variability and Deep Groundwater Fluctuation in Thailand’s Central Plains. KSCE J. Civ. Eng. 2018, 22, 868–876. [Google Scholar] [CrossRef]
- UNEP-DHI; IWA. Flood & Drought Management Tools. 2014. Available online: https://www.flooddroughtmonitor.com/knowledgeportal. (accessed on 8 February 2022).
- Komolafe, A.A.; Herath, S.; Avtar, R. Establishment of Detailed Loss Functions for the Urban Flood Risk Assessment in Chao Phraya River Basin, Thailand. Geomat. Nat. Hazards Risk 2019, 10, 633–650. [Google Scholar] [CrossRef]
- Taweesin, K.; Seeboonruang, U.; Saraphirom, P. The Influence of Climate Variability Effects on Groundwater Time Series in the Lower Central Plains of Thailand. Water 2018, 10, 290. [Google Scholar] [CrossRef]
- Sharma, Y.K.; Kim, S.; Tayerani Charmchi, A.S.; Kang, D.; Batelaan, O. Strategic Imputation of Groundwater Data Using Machine Learning: Insights from Diverse Aquifers in the Chao-Phraya River Basin. Groundw. Sustain. Dev. 2024, 28, 101394. [Google Scholar] [CrossRef]
- Kamdee, K.; Corcho Alvarado, J.A.; Yongprawat, M.; Occarach, O.; Hunyek, V.; Wongsit, A.; Saengkorakot, C.; Chanruang, P.; Polee, C.; Uapoonphol, N.; et al. Using 81Kr and Isotopic Tracers to Characterise Old Groundwater in the Bangkok Metropolitan and Vicinity Areas. Isotopes Environ. Health Stud. 2023, 59, 426–453. [Google Scholar] [CrossRef]
- Lorphensri, O.; Nettasana, T.; Ladawadee, A. Groundwater Environment in Bangkok and the Surrounding Vicinity, Thailand. In Groundwater Environment in Asian Cities; Elsevier: Amsterdam, The Netherlands, 2016; pp. 229–262. ISBN 978-0-12-803166-7. [Google Scholar]
- Wang, Y.; Chen, G.; Yu, H.; Xu, X.; Liu, W.; Fu, T.; Su, Q.; Zou, Y.; Kornkanitnan, N.; Shi, X. Distribution of 222Rn in Seawater Intrusion Area and Its Implications on Tracing Submarine Groundwater Discharge on the Upper Gulf of Thailand. Lithosphere 2022, 2022, 2039170. [Google Scholar] [CrossRef]
- Tanachaichoksirikun, P. Groundwater vulnerability of Thailand’s lower Chao Phraya Basin. Int. J. GEOMATE 2020, 18, 88–96. [Google Scholar] [CrossRef]
- Taweelarp, S.; Khebchareon, M.; Saenton, S. Evaluation of Groundwater Potential and Safe Yield of Heterogeneous Unconsolidated Aquifers in Chiang Mai Basin, Northern Thailand. Water 2021, 13, 558. [Google Scholar] [CrossRef]
- Buapeng, S.; Wattayakorn, G. Groundwater Situation in Bangkok and Its Vicinity. In Proceedings of the HydrroChange 2008 in KYOTO: Hydrological Changes and Management from Headwater to the Ocean, Kyoto, Japan, 1–3 October 2008. [Google Scholar] [CrossRef]
- World Bank. Thailand Environment Monitor Integrated Water Resource Management: A Way Forward; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Shakti, P.C.; Miyamoto, M.; Misumi, R.; Nakamura, Y.; Sriariyawat, A.; Visessri, S.; Kakinuma, D. Assessing Flood Risk of the Chao Phraya River Basin Based on Statistical Rainfall Analysis. J. Disaster Res. 2020, 15, 1025–1039. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory (JPL) Tellus. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height Release 06 Coastal Resolution Improvement (CRI) Filtered Version 1.0. 2018. Available online: https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACE_MASCON_CRI_GRID_RL06_V1 (accessed on 15 January 2022).
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and Flood Monitoring for a Large Karst Plateau in Southwest China Using Extended GRACE Data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S. Statistical Downscaling of GRACE-Derived Groundwater Storage Using ET Data in the North China Plain. J. Geophys. Res. Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Hu, Y.; Chao, N.; Yang, Y.; Wang, J.; Yin, W.; Xie, J.; Duan, G.; Zhang, M.; Wan, X.; Li, F.; et al. Integrating GRACE/GRACE Follow-On and Wells Data to Detect Groundwater Storage Recovery at a Small-Scale in Beijing Using Deep Learning. Remote Sens. 2023, 15, 5692. [Google Scholar] [CrossRef]
- Ali, S.; Ran, J.; Khorrami, B.; Wu, H.; Tariq, A.; Jehanzaib, M.; Khan, M.M.; Faisal, M. Downscaled GRACE/GRACE-FO Observations for Spatial and Temporal Monitoring of Groundwater Storage Variations at the Local Scale Using Machine Learning. Groundw. Sustain. Dev. 2024, 25, 101100. [Google Scholar] [CrossRef]
- Seo, J.Y.; Lee, S.-I. Predicting Changes in Spatiotemporal Groundwater Storage Through the Integration of Multi-Satellite Data and Deep Learning Models. IEEE Access 2021, 9, 157571–157583. [Google Scholar] [CrossRef]
- Li, B.; Beaudoing, H.; Rodell, M.; NASA/GSFC/HSL. GLDAS Catchment Land Surface Model L4 Monthly 1.0 × 1.0 Degree Early Product V2.1. 2020. Available online: https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_CLSM10_M.2.1/ (accessed on 15 January 2022).
- Alghafli, K.; Shi, X.; Sloan, W.; Shamsudduha, M.; Tang, Q.; Sefelnasr, A.; Ebraheem, A.A. Groundwater Recharge Estimation Using In-Situ and GRACE Observations in the Eastern Region of the United Arab Emirates. Sci. Total Environ. 2023, 867, 161489. [Google Scholar] [CrossRef]
- Sarkar, T.; Kannaujiya, S.; Taloor, A.K.; Champati Ray, P.K.; Chauhan, P. Integrated Study of GRACE Data Derived Interannual Groundwater Storage Variability over Water Stressed Indian Regions. Groundw. Sustain. Dev. 2020, 10, 100376. [Google Scholar] [CrossRef]
- Tariq, A.; Ali, S.; Basit, I.; Jamil, A.; Farmonov, N.; Khorrami, B.; Khan, M.M.; Sadri, S.; Baloch, M.Y.J.; Islam, F.; et al. Terrestrial and Groundwater Storage Characteristics and Their Quantification in the Chitral (Pakistan) and Kabul (Afghanistan) River Basins Using GRACE/GRACE-FO Satellite Data. Groundw. Sustain. Dev. 2023, 23, 100990. [Google Scholar] [CrossRef]
- Royal Irrigation Department Reservoir Storage Data. 2017. Available online: https://app.rid.go.th/reservoir/ (accessed on 15 January 2022).
- Department of Groundwater Resources, Thailand. Waterlevel Data. 2021. Available online: https://www.dgr.go.th/ (accessed on 10 March 2022).
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in Evapotranspiration from Land Surface Modeling, Remote Sensing, and GRACE Satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.; Biancale, R.; Hsu, H.; Xia, J. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-based Measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S. Hydrologic Sensitivity of Flood Runoff and Inundation: 2011 Thailand Floods in the Chao Phraya River Basin. Nat. Hazards Earth Syst. Sci. 2015, 15, 1617–1630. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Adeyeri, O.E.; Onojeghuo, A.O.; Ferreira, V.G.; Kalu, I.; Okwuashi, O. Understanding Global Groundwater-Climate Interactions. Sci. Total Environ. 2023, 904, 166571. [Google Scholar] [CrossRef]
- Liesch, T.; Ohmer, M. Comparison of GRACE Data and Groundwater Levels for the Assessment of Groundwater Depletion in Jordan. Hydrogeol. J. 2016, 24, 1547–1563. [Google Scholar] [CrossRef]
- Rodell, M.; Chao, B.F.; Au, A.Y.; Kimball, J.S.; McDonald, K.C. Global Biomass Variation and Its Geodynamic Effects: 1982–98. Earth Interact. 2005, 9, 1–19. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Zhang, X.; Wang, J. Estimating Long-Term Groundwater Storage and Its Controlling Factors in Alberta, Canada. Hydrol. Earth Syst. Sci. 2018, 22, 6241–6255. [Google Scholar] [CrossRef]
- Johnson, A.J. Specific Yield: Compilation of Specific Yields for Various Materials; United Sates Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Todd, D.K. Groundwater Hydrology; Wiley and Sons: Hoboken, NJ, USA, 2005; ISBN 0-471-45254-8. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Sharma, Y.; Tyagi, A.; Sharma, M.L.; Sharma, P.; Aggarwal, A. Building Vulnerability Assessment Using Artificial Intelligence forLandslide Susceptibility Zone in Champawat District, India. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE Groundwater Drought Index: Evaluation of California Central Valley Groundwater Drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-Based Groundwater Drought Index for Drought Characterization and Teleconnection Factors Analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Maity, R.; Sharma, A.; Nagesh Kumar, D.; Chanda, K. Characterizing Drought Using the Reliability-Resilience-Vulnerability Concept. J. Hydrol. Eng. 2013, 18, 859–869. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.R.; Rodell, M. Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-Level Measurements from the High Plains Aquifer (USA). Geophys. Res. Lett. 2007, 34, L14402. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Longuevergne, L. Monitoring Groundwater Storage Changes in the Highly Seasonal Humid Tropics: Validation of GRACE Measurements in the Bengal Basin: VALIDATING GRACE ΔGWS IN THE HUMID TROPICS. Water Resour. Res. 2012, 48, W02508. [Google Scholar] [CrossRef]
- Abhishek; Kinouchi, T.; Sayama, T. A Comprehensive Assessment of Water Storage Dynamics and Hydroclimatic Extremes in the Chao Phraya River Basin during 2002–2020. J. Hydrol. 2021, 603, 126868. [Google Scholar] [CrossRef]
- Bangkok; Long, T.T.; Sucharit, K.; Chokchai, S.; Chi, H.; City, M.; Ward, L.T.; District, T.D. Sustainable groundwater pumping in the upper central plain, Thailand and ANN application for available GW pumping. In Proceedings of the 1st Thailand Groundwater Symposium: Key to Water Security and Sustainability, Bangkok, Thailand, 2–26 August 2022. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, B.; Yang, D.; Wang, T.; Yang, Y.; Ma, T.; Santisirisomboon, J. Future Changes in Water Resources, Floods and Droughts under the Joint Impact of Climate and Land-Use Changes in the Chao Phraya Basin, Thailand. J. Hydrol. 2023, 620, 129454. [Google Scholar] [CrossRef]
- Tomkratoke, S.; Kongkulsiri, S.; Narenpitak, P.; Sirisup, S. Drought and Salinity Intrusion in the Lower Chao Phraya River: Variability Analysis and Modeling Mitigation Approaches. EGUsphere 2025. preprint. [Google Scholar] [CrossRef]
- Khairunnisa, A. Thailand Drought 2015: Climate Change Impacts Real. 2015. Available online: https://www.acccrn.net/blog/thailand-drought-2015-climate-change-impacts-real. (accessed on 7 April 2022).
- Loc, H.H.; Emadzadeh, A.; Park, E.; Nontikansak, P.; Deo, R.C. The Great 2011 Thailand Flood Disaster Revisited: Could It Have Been Mitigated by Different Dam Operations Based on Better Weather Forecasts? Environ. Res. 2023, 216, 114493. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cazenave, A.; Dahle, C.; Llovel, W.; Panet, I.; Pfeffer, J.; Moreira, L. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry. Surv. Geophys. 2022, 43, 305–345. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. J. Geophys. Res. Solid Earth 2008, 113, 2007JB005338. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Time-Variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data: UNDERSTANDING GRACE ICE MASS ESTIMATES. Geophys. Res. Lett. 2013, 40, 3055–3063. [Google Scholar] [CrossRef]
- Uz, M.; Atman, K.G.; Akyilmaz, O.; Shum, C.K.; Keleş, M.; Ay, T.; Tandoğdu, B.; Zhang, Y.; Mercan, H. Bridging the Gap between GRACE and GRACE-FO Missions with Deep Learning Aided Water Storage Simulations. Sci. Total Environ. 2022, 830, 154701. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 Mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and Reducing Leakage Errors in the JPL RL05M GRACE Mascon Solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Khan, U.; Faheem, H.; Jiang, Z.; Wajid, M.; Younas, M.; Zhang, B. Integrating a GIS-Based Multi-Influence Factors Model with Hydro-Geophysical Exploration for Groundwater Potential and Hydrogeological Assessment: A Case Study in the Karak Watershed, Northern Pakistan. Water 2021, 13, 1255. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Z.; Song, L.; Yu, X.; Yuan, S.; Zhang, B. A Groundwater Level Spatiotemporal Prediction Model Based on Graph Convolutional Networks with a Long Short-Term Memory. J. Hydroinform. 2024, 26, 2962–2979. [Google Scholar] [CrossRef]
Data | Product Specification | Spatial/Temporal Resolution | Source |
---|---|---|---|
Terrestrial water storage anomaly (TWSA) (cm) | GRACE JPL Mascon Land RL06 V2 (Time Mean: 2004–2009) | 0.5° × 0.5°/Monthly | NASA Jet Propulsion Laboratory (JPL) Tellus (2018) |
In situ surface water level (SWL) (m MSL) | N/A | Daily | Royal Irrigation Department (RID) |
In situ groundwater level (h) (m MSL) | N/A | Monthly | Department of Groundwater Resources (DGR) |
Soil moisture storage (SMS) (kg/m2) | GLDAS-2.1 NOAH model | 0.25° × 0.25°/Monthly | [43] |
Grade | Classification | GGDI |
---|---|---|
I | No Drought | −0.5 < GGDI |
II | Mild Drought | −1.0 < GGDI ≤ −0.5 |
III | Moderate Drought | −1.5 < GGDI ≤ −1.0 |
IV | Severe Drought | −2 < GGDI ≤ −1.5 |
V | Extreme Drought | GGDI ≤ −2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, Y.K.; Mohanasundaram, S.; Kim, S.; Shrestha, S.; Babel, M.S.; Loc, H.H. Enhancing Aquifer Reliability and Resilience Assessment in Data-Scarce Regions Using Satellite Data: Application to the Chao Phraya River Basin. Remote Sens. 2025, 17, 1731. https://doi.org/10.3390/rs17101731
Sharma YK, Mohanasundaram S, Kim S, Shrestha S, Babel MS, Loc HH. Enhancing Aquifer Reliability and Resilience Assessment in Data-Scarce Regions Using Satellite Data: Application to the Chao Phraya River Basin. Remote Sensing. 2025; 17(10):1731. https://doi.org/10.3390/rs17101731
Chicago/Turabian StyleSharma, Yaggesh Kumar, S. Mohanasundaram, Seokhyeon Kim, Sangam Shrestha, Mukand S. Babel, and Ho Huu Loc. 2025. "Enhancing Aquifer Reliability and Resilience Assessment in Data-Scarce Regions Using Satellite Data: Application to the Chao Phraya River Basin" Remote Sensing 17, no. 10: 1731. https://doi.org/10.3390/rs17101731
APA StyleSharma, Y. K., Mohanasundaram, S., Kim, S., Shrestha, S., Babel, M. S., & Loc, H. H. (2025). Enhancing Aquifer Reliability and Resilience Assessment in Data-Scarce Regions Using Satellite Data: Application to the Chao Phraya River Basin. Remote Sensing, 17(10), 1731. https://doi.org/10.3390/rs17101731