Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Receiver Antenna Phase Center Corrections (PCCs)
2.2. LMMT Robotic Calibration System
2.3. Validation Methodology
- Accuracy analysis at the PCC pattern level by comparison with independent calibration results provided by Geo++ GmbH;
- Short-baseline validation and analysis in the spatial domain;
- Validation and analysis at the GNSS/GPS network solution level.
2.3.1. Validation by Comparison with Geo++ GmbH
2.3.2. Short-Baseline Validation
2.3.3. GNSS/GPS Network Validation
3. Results and Discussion
3.1. Results of Validation with Geo++ GmbH
3.2. Results of Short-Baseline Validation
3.3. Results of GNSS/GPS Network Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altamimi, Z.; Rebischung, P.; Collilieux, X.; Métivier, L.; Chanard, K. ITRF2020: An augmented reference frame refining the modeling of nonlinear station motions. J. Geod. 2023, 97, 47. [Google Scholar] [CrossRef]
- Farolfi, G.; Del Ventisette, C. Monitoring the Earth’s ground surface movements using satellite observations: Geodinamics of the Italian peninsula determined by using GNSS networks. In Proceedings of the 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy, 22–23 June 2016; pp. 479–483. [Google Scholar] [CrossRef]
- Wu, D.; Xiong, W.; Guo, J. Establishment and Repetition Survey of Primary GNSS Control Network of Hong Kong–Zhuhai–Macao Bridge. J. Surv. Eng. 2022, 148, 1. [Google Scholar] [CrossRef]
- Villiger, A.; Dach, R.; Schaer, S.; Prange, L.; Zimmermann, F.; Kuhlmann, H.; Wübbena, G.; Schmitz, M.; Beutler, G.; Jäggi, A. GNSS Scale Determination Using Calibrated Receiver and Galileo Satellite Antenna Patterns. J. Geod. 2020, 94, 93. [Google Scholar] [CrossRef]
- Kersten, T.; Kröger, J.; Schön, S. Comparison Concept and Quality Metrics for GNSS Antenna Calibrations. J. Geod. 2022, 96, 48. [Google Scholar] [CrossRef]
- Maqsood, M.; Gao, S.; Montenbruck, O. Antennas. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, J.G.P., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 505–534. [Google Scholar] [CrossRef]
- Wübbena, G.; Schmitz, M.; Menge, F.; Seeber, G.; Völksen, C. A New Approach for Field Calibration of Absolute GPS Antenna Phase Center Variations. Navigation 1997, 44, 247–255. [Google Scholar] [CrossRef]
- Wübbena, G.; Schmitz, M.; Menge, F.; Böder, V.; Seeber, G. Automated Absolute Field Calibration of GPS Antennas in Real-Time. In Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 2512–2522. [Google Scholar]
- Kersten, T.; Schön, S. Towards Modeling Phase Center Variations for Multi-Frequency and Multi-GNSS. In Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, NAVITEC 2010, Noordwijk, The Netherlands, 8–10 December 2010; pp. 1–8. [Google Scholar]
- Hu, Z.; Zhao, Q.; Chen, G.; Wang, G.; Dai, Z.; Li, T. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University. Sensors 2015, 15, 28717–28731. [Google Scholar] [CrossRef]
- Kröger, J.; Kersten, T.; Breva, Y.; Schön, S. Multi-frequency multi-GNSS receiver antenna calibration at IfE: Concept—Calibration results—Validation. Adv. Space Res. 2021, 68, 4932–4947. [Google Scholar] [CrossRef]
- Rothacher, M.; Schmid, R. ANTEX: The Antenna Exchange Format, Version 1.4; International GNSS Service: Pasadena, CA, USA, 2010. [Google Scholar]
- Baire, Q.; Bruyninx, C.; Legrand, J.; Pottiaux, E.; Aerts, W.; Defraying, P.; Bergeot, N.; Chevalier, J.M. Influence of Different GPS Receiver Antenna Calibration Models on Geodetic Positioning. GPS Solut. 2014, 18, 529–539. [Google Scholar] [CrossRef]
- IGS File Access. Available online: https://files.igs.org/pub/station/general/ (accessed on 24 November 2024).
- Geiger, A. Modeling of phase center variation and its influence on GPS-positioning. In GPS-Techniques Applied to Geodesy and Surveying; Groten, E., Strauß, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 210–222. [Google Scholar] [CrossRef]
- Zeimetz, P. Zur Entwicklung Und Bewertung Der Absoluten GNSS-Antennenkalibrierung Im HF-Labor. Ph.D. Thesis, University Bonn, Bonn, Germany, 2010. [Google Scholar]
- Tupek, A.; Zrinjski, M.; Švaco, M.; Barković, Đ. GNSS Receiver Antenna Absolute Field Calibration System Development: Testing and Preliminary Results. Remote Sens. 2023, 15, 4622. [Google Scholar] [CrossRef]
- Willi, D.; Koch, D.; Meindl, M.; Rothacher, M. Absolute GNSS Antenna Phase Center Calibration with a Robot. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 3909–3926. [Google Scholar] [CrossRef]
- Willi, D. GNSS Receiver Synchronisation and Antenna Calibration. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2019. [Google Scholar]
- Dawidowicz, K.; Rapiński, J.; Śmieja, M.; Wielgosz, P.; Kwaśniak, D.; Jarmołowski, W.; Grzegory, T.; Tomaszewski, D.; Janicka, J.; Gołaszewski, P.; et al. Preliminary Results of an Astri/UWM EGNSS Receiver Antenna Calibration Facility. Sensors 2021, 21, 4639. [Google Scholar] [CrossRef]
- Wübbena, G.; Schmitz, M.; Warneke, A. Geo++ Absolute Multi-Frequency GNSS Antenna Calibration. In Proceedings of the EUREF Analysis Centres Workshop, Warsaw, Poland, 16–17 October 2019. [Google Scholar]
- Kersten, T. Bestimmung von Codephasen-Variationen Bei GNSS-Empfangsantennen Und Deren Einfluss Auf Die Positionierung, Navigation Und Zeitübertragung. Ph.D. Thesis, University of Hannover, Hannover, Germany, 2014. [Google Scholar]
- Kröger, J.; Kersten, T.; Breva, Y.; Schön, S. Multi-GNSS Receiver Antenna Calibration. In Proceedings of the FIG Working Week 2020, Amsterdam, The Netherlands, 10–14 May 2020; pp. 1–13. [Google Scholar]
- Kröger, J.; Breva, Y.; Kersten, T.; Schön, S. Recent Antenna Calibration Developments at IFE. In Proceedings of the IGS Symposium & Workshop, Bern, Switzerland, 1–5 July 2024. [Google Scholar]
- Riddell, A.; Moore, M.; Hu, G. Geoscience Australia’s GNSS Antenna Calibration Facility: Initial Results. In Proceedings of the Proceedings of the International GNSS Society Symposium (IGNSS 2015), Gold Coast, Australia, 16–17 July 2015; pp. 1–12. [Google Scholar]
- Bilich, A.; Erickson, B.; Geoghegan, C. 6-Axis Robot for Absolute Antenna Calibration at the US National Geodetic Survey. In Proceedings of the IGS Workshop 2018, Wuhan, China, 29 October–2 November 2018. [Google Scholar]
- Hu, Z.; Cai, H.; Jiao, W.; Zhou, R.; Zhai, Q.; Liu, X.; Kan, H.; Zhao, Q. Preliminary Results of IGMAS BDS/GNSS Absolute Antenna Phase Center Field Calibration. In Proceedings of the China Satellite Navigation Conference (CSNC 2022), Beijing, China, 22–25 May 2022; pp. 147–160. [Google Scholar]
- Zhou, R.; Hu, Z.; Zhao, Q.; Chen, G.; Tao, J. Absolute field calibration of receiver antenna phase center models for GPS/BDS-3 signals. J. Geod. 2022, 97, 83. [Google Scholar] [CrossRef]
- Willi, D.; Lutz, S.; Brockmann, E.; Rothacher, M. Absolute Field Calibration for Multi-GNSS Receiver Antennas at ETH Zurich. GPS Solut. 2020, 24, 28. [Google Scholar] [CrossRef]
- Sutyagin, I.; Tatarnikov, D. Absolute Robotic GNSS Antenna Calibrations in Open Field Environment. GPS Solut. 2020, 24, 92. [Google Scholar] [CrossRef]
- Zrinjski, M.; Barković, Đ.; Matika, K. Development and Modernization of GNSS. Geod. List. 2019, 73, 45–65. [Google Scholar]
- Tupek, A. Development of an Absolute GNSS Antenna Field Calibration System. Ph.D. Thesis, University of Zagreb—Faculty of Geodesy, Zagreb, Croatia, 2024. [Google Scholar]
- Tupek, A.; Zrinjski, M.; Švaco, M.; Barković, Đ. Early Results on GNSS Receiver Antenna Calibration System Development. Eng. Proc. 2023, 58, 98. [Google Scholar] [CrossRef]
- Tupek, A.; Zrinjski, M.; Barković, Đ.; Špoljar, K. Absolute GNSS Receiver Antenna Calibration at the Faculty of Geodesy—University of Zagreb. In Proceedings of the 9th International Conference Contemporary Achievements in Civil Engineering 2024, Subotica, Serbia, 25–26 April 2024; pp. 604–616. [Google Scholar] [CrossRef]
- Tupek, A.; Zrinjski, M.; Barković, Đ.; Špoljar, K. Dual-frequency GPS Receiver Antenna PCC Estimation and Validation at the Faculty of Geodesy in Croatia. In Proceedings of the International Symposium on Engineering Geodesy—SIG2024, Zagreb, Croatia, 12–14 September 2024; pp. 243–254. [Google Scholar]
- Schön, S.; Kersten, T. On Adequate Comparison of Antenna Phase Center Variations. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Mitsubishi Electric Corporation. Mitsubishi Industrial Robot RV-4F-D/7F-DI73F-DI20F-D Series Standard Specification Manual; Mitsubishi Electric Corporation: Tokyo, Japan, 2013. [Google Scholar]
- Zrinjski, M.; Barković, Đ.; Špoljar, K. Review of Precise Calibration Methods of Geodetic Calibration Baselines. Geod. List. 2022, 76, 25–52. [Google Scholar]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy, 2nd ed.; Springer: Vienna, Austria, 2006; ISBN 978-3-211-33544-4. [Google Scholar]
- Kallio, U.; Koivula, H.; Lahtinen, S.; Nikkonen, V.; Poutanen, M. Validating and Comparing GNSS Antenna Calibrations. J. Geod. 2019, 93, 1–18. [Google Scholar] [CrossRef]
- Hauschild, A. Combinations of Observations. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, J.G.P., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 583–604. [Google Scholar] [CrossRef]
- Mittermayer, E. A generalisation of the least-squares method for the adjustment of free networks. Bull. Géodésique 1972, 104, 139–157. [Google Scholar] [CrossRef]
- WaSoft Software Package. Available online: http://www.wasoft.de/e (accessed on 24 November 2024).
Campaign Number | Date of Calibration | Day of Year (DoY) |
---|---|---|
1 | 26 May 2023 | 146 |
2 | 16 June 2023 | 167 |
3 | 19 June 2023 | 170 |
4 | 20 June 2023 | 171 |
Antenna | S/N | IGS Antenna Code | I/L | Calibration Date/ Campaign No. |
---|---|---|---|---|
Trimble Zephyr 2 Geodetic | 30739001 | TRM57971.00 NONE | Z1 | 26 May 2023/1 |
16 June 2023/2 | ||||
19 June 2023/3 | ||||
20 June 2023/4 | ||||
Trimble Zephyr 2 Geodetic | 30734472 | TRM57971.00 NONE | Z2 | 19 June 2023/3 |
Trimble Zephyr 2 Geodetic | 30738967 | TRM57971.00 NONE | Z3 | 19 June 2023/3 |
Trimble Zephyr 2 Geodetic | 30278601 | TRM55971.00 NONE | Z4 | 16 June 2023/2 |
Leica Geosystems AX1202 GG | 08190116 | LEIAX1202GG NONE | LG | 16 June 2023/2 |
20 June 2023/4 | ||||
Topcon PG-A1 | 308-1874 | TPSPG_A1 NONE | TP | 19 June 2023/3 |
20 June 2023/4 |
Short-Baseline | ||||||
---|---|---|---|---|---|---|
T–R | 0.1785 | −4.8749 | 1.1078 | −4.7350 | 1.6132 | −0.0262 |
T–A | 0.3986 | −9.7471 | 2.2109 | −9.4789 | 3.1940 | −0.0274 |
T–ST | 0.8633 | −19.4700 | 4.4171 | −18.9529 | 6.3345 | −0.0091 |
Calibration Frequency | Full Antenna Hemisphere (0° Elevation Cut-Off) [mm] | Reduced Antenna Hemisphere (10° Elevation Cut-Off) [mm] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | RMS | Range | IQR | Min. | Max. | RMS | Range | IQR | |
GPS L1 (G01) | −1.85 | 0.61 | 0.36 | 2.46 | 0.41 | −1.13 | 0.61 | 0.31 | 1.74 | 0.38 |
GPS L2 (G02) | −2.15 | 1.01 | 0.54 | 3.16 | 0.67 | −1.26 | 0.85 | 0.47 | 2.11 | 0.54 |
Date/DoY/Epoch. | 7 June 2023/158/2023.43 |
Time of survey (UTC)/Survey duration | 6:45–12:45/6:00 |
Observation interval | 1 s |
Elevation mask | 10° |
Average number of GPS satellites | 9 |
Short Baseline | Freq. | PCC Model | ||||||
---|---|---|---|---|---|---|---|---|
T–R | L1 | IGS | 0.1787 | −4.8769 | 1.1069 | −4.7370 | 1.6129 | −0.0271 |
LMMT | 0.1786 | −4.8759 | 1.1086 | −4.7360 | 1.6139 | −0.0258 | ||
L2 | IGS | 0.1695 | −4.8753 | 1.1006 | −4.7329 | 1.6145 | −0.0375 | |
LMMT | 0.1808 | −4.8747 | 1.1106 | −4.7355 | 1.6136 | −0.0226 | ||
L0 | IGS | 0.1935 | −4.8799 | 1.1180 | −4.7440 | 1.6110 | −0.0098 | |
LMMT | 0.1760 | −4.8780 | 1.1073 | −4.7373 | 1.6152 | −0.0289 | ||
T–A | L1 | IGS | 0.3982 | −9.7479 | 2.2085 | −9.4796 | 3.1928 | −0.0295 |
LMMT | 0.3998 | −9.7481 | 2.2119 | −9.4802 | 3.1941 | −0.0260 | ||
L2 | IGS | 0.3967 | −9.7477 | 2.2128 | −9.4790 | 3.1968 | −0.0274 | |
LMMT | 0.3979 | −9.7485 | 2.2120 | −9.4801 | 3.1956 | −0.0273 | ||
L0 | IGS | 0.4023 | −9.7483 | 2.2041 | −9.4811 | 3.1870 | −0.0300 | |
LMMT | 0.4042 | −9.7475 | 2.2138 | −9.4809 | 3.1923 | −0.0216 | ||
T–ST | L1 | IGS | 0.8639 | −19.4707 | 4.4185 | −18.9537 | 6.3352 | −0.0078 |
LMMT | 0.8634 | −19.4707 | 4.4186 | −18.9536 | 6.3356 | −0.0081 | ||
L2 | IGS | 0.8659 | −19.4720 | 4.4180 | −18.9555 | 6.3337 | −0.0071 | |
LMMT | 0.8641 | −19.4715 | 4.4197 | −18.9545 | 6.3361 | −0.0070 | ||
L0 | IGS | 0.8618 | −19.4689 | 4.4212 | −18.9514 | 6.3382 | −0.0069 | |
LMMT | 0.8632 | −19.4698 | 4.4187 | −18.9526 | 6.3357 | −0.0080 |
Short Baseline | Freq. | PCC Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T–R | L1 | IGS | −0.2 | 2.0 | 0.9 | 2.0 | 0.4 | 0.9 | 2.0 | 2.2 |
LMMT | −0.1 | 1.0 | −0.8 | 1.0 | −0.7 | −0.4 | 1.2 | 1.3 | ||
L2 | IGS | 9.0 | 0.4 | 7.2 | −2.1 | −1.2 | 11.3 | 2.4 | 11.5 | |
LMMT | −2.3 | −0.2 | −2.8 | 0.4 | −0.3 | −3.6 | 0.6 | 3.6 | ||
L0 | IGS | −15.0 | 5.0 | −10.2 | 8.9 | 2.2 | −16.4 | 9.2 | 18.8 | |
LMMT | 2.5 | 3.1 | 0.5 | 2.3 | −2.0 | 2.6 | 3.0 | 4.0 | ||
T–A | L1 | IGS | 0.4 | 0.8 | 2.4 | 0.7 | 1.2 | 2.1 | 1.4 | 2.6 |
LMMT | −1.2 | 1.0 | −1.0 | 1.3 | −0.1 | −1.3 | 1.3 | 1.9 | ||
L2 | IGS | 1.9 | 0.6 | −1.9 | 0.1 | −2.8 | 0.0 | 2.8 | 2.8 | |
LMMT | 0.7 | 1.4 | −1.1 | 1.2 | −1.5 | 0.0 | 1.9 | 1.9 | ||
L0 | IGS | −3.7 | 1.2 | 6.8 | 2.2 | 7.1 | 2.6 | 7.4 | 7.8 | |
LMMT | −5.6 | 0.4 | −2.9 | 1.9 | 1.7 | −5.8 | 2.6 | 6.3 | ||
T–ST | L1 | IGS | −0.6 | 0.7 | −1.4 | 0.8 | −0.7 | −1.3 | 1.1 | 1.7 |
LMMT | −0.1 | 0.7 | −1.5 | 0.7 | −1.1 | −1.0 | 1.3 | 1.7 | ||
L2 | IGS | −2.6 | 2.0 | −0.9 | 2.6 | 0.8 | −2.0 | 2.7 | 3.4 | |
LMMT | −0.8 | 1.5 | −2.6 | 1.7 | −1.6 | −2.1 | 2.3 | 3.1 | ||
L0 | IGS | 1.5 | −1.1 | −4.1 | −1.5 | −3.7 | −2.1 | 4.0 | 4.5 | |
LMMT | 0.1 | −0.2 | −1.6 | −0.2 | −1.1 | −1.1 | 1.2 | 1.6 |
PCC Model | Per Component | ||
---|---|---|---|
Height | 2D | 3D | |
IGS | 6.82 | 4.51 | 8.18 |
LMMT | 2.62 | 1.87 | 3.21 |
Short-Baseline Component | Test Statistics | p-Value | Lower Critical Value | Upper Critical Value | Hypothesis Accepted |
---|---|---|---|---|---|
Height | 6.793 | 0.014 | 0.226 | 4.433 | |
2D | 5.850 | 0.022 | 0.226 | 4.433 | |
3D | 6.475 | 0.016 | 0.226 | 4.433 |
Date/DoY/Epoch | 12 June 2023/163/2023.45 |
Time of survey (UTC)/Survey duration | 6:20–13:00/6:40 |
Registration interval | 15 s |
Elevation mask | 10° |
Average number of GPS satellites | 7 |
Station | |||||||
---|---|---|---|---|---|---|---|
CB1 | 4,288,747.3357 | 1,230,643.5523 | 4,542,659.7027 | 0.99 | 1.15 | 0.75 | 1.69 |
CB2 | 4,288,755.2340 | 1,230,468.2036 | 4,542,699.6583 | 0.99 | 1.15 | 0.75 | 1.69 |
MDVG | 4,278,144.0819 | 1,221,927.0432 | 4,555,592.3033 | 1.58 | 1.40 | 1.69 | 2.70 |
BRSK | 4,307,965.4474 | 1,200,393.7500 | 4,532,779.1697 | 2.44 | 2.98 | 1.38 | 4.09 |
Station | |||||||
---|---|---|---|---|---|---|---|
CB1 | 4,288,747.3376 | 1,230,643.5514 | 4,542,659.7015 | 0.75 | 0.88 | 0.57 | 1.30 |
CB2 | 4,288,755.2354 | 1,230,468.2027 | 4,542,699.6572 | 0.75 | 0.88 | 0.57 | 1.30 |
MDVG | 4,278,144.0785 | 1,221,927.0438 | 4,555,592.3017 | 1.21 | 1.07 | 1.29 | 2.07 |
BRSK | 4,307,965.4476 | 1,200,393.7511 | 4,532,779.1737 | 1.87 | 2.29 | 1.06 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tupek, A.; Zrinjski, M.; Špoljar, K.; Stipetić, K. Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System. Remote Sens. 2025, 17, 64. https://doi.org/10.3390/rs17010064
Tupek A, Zrinjski M, Špoljar K, Stipetić K. Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System. Remote Sensing. 2025; 17(1):64. https://doi.org/10.3390/rs17010064
Chicago/Turabian StyleTupek, Antonio, Mladen Zrinjski, Krunoslav Špoljar, and Karlo Stipetić. 2025. "Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System" Remote Sensing 17, no. 1: 64. https://doi.org/10.3390/rs17010064
APA StyleTupek, A., Zrinjski, M., Špoljar, K., & Stipetić, K. (2025). Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System. Remote Sensing, 17(1), 64. https://doi.org/10.3390/rs17010064