Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Laser Altimetry Data
2.3. Optical Remote Sensing Imagery
2.4. Digital Elevation Model (DEM) Data
2.5. Measurements from Fieldwork
3. Methods
3.1. Canopy Height Extraction from GEDI Waveform Data
3.2. Feature Extraction from Optical Images in Vegetated Areas
3.3. Canopy Height Estimation Model through Random Forest
3.3.1. Canopy Height Estimation Model Using GEDI Joint Optical Images
3.3.2. Canopy Height Estimation Model Only Using Optical Images
3.4. Estimation of AGB with Canopy Height of Vegetation
4. Results
4.1. Vegetation Canopy Heights Mappings
4.2. Vegetation AGB Mappings
4.3. Comparison and Validation
4.3.1. Canopy Height Accuracy
4.3.2. AGB Accuracy
5. Discussion
5.1. Importance of Multi-Features for Canopy Height and AGB Estimation
5.2. The Impact of Vegetation Distribution on AGB
5.3. Seasonal Factor for the Estimation of Canopy Height and AGB
5.4. Influence of Field Measurements on AGB Estimation
6. Conclusions
- (1)
- The method of combining GEDI and optical images can improve the accuracy of vegetation canopy height estimation, and thus effectively improve the accuracy of AGB estimation. The estimation accuracy (R2 = 0.58) is higher than that of using only optical images (R2 = 0.45).
- (2)
- Three typical vegetated areas including the coniferous forest, broadleaf forest, and the shorter vegetation region are extracted to estimate the AGB. The total AGB in the shorter vegetation region is higher than the other two in the broadleaf forest and the coniferous forest, but the AGB per unit area is the lowest in the shorter vegetation area at 33.60 Mg/ha, and the coniferous forests have a wider distribution range of AGB per unit area at 46.60 Mg/ha.
- (3)
- Seasonal variations in vegetation also have a significant impact on the estimation of AGB. However, the highest average AGB occurs in October–December at 59.55 Mg/ha in Xuzhou using GEDI joint optical images, which is different from the normal pattern and the results using only optical images. A more accurate estimation of AGB calls for more laser observations or more field measurements.
- (4)
- The importance of multi-features is different for canopy height and AGB estimation. The near-infrared band and texture features have a greater influence on the estimation. However, the spectral similarity of trees and shrubs in the optical images leads higher estimation of canopy height in the shorter vegetation region and lower estimation in forest areas while using GEDI joint optical images. More detailed structures and precise features of vegetation are needed for AGB estimation in the future.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilson, J.S.; Clay, M.; Martin, E.; Stuckey, D.; Vedder-Risch, K. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sens. Environ. 2003, 86, 303–321. [Google Scholar] [CrossRef]
- Pataki, D.E. Urban greening needs better data. Nature 2013, 502, 624. [Google Scholar] [CrossRef]
- MacKenzie, R.; Pugh, T.; Rogers, C. Sustainable cities: Seeing past the trees. Nature 2010, 468, 765. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.; Al-Ghamdi, S.G. Estimation of Above-Ground Carbon-Stocks for Urban Greeneries in Arid Areas: Case Study for Doha and FIFA World Cup Qatar 2022. Front. Environ. Sci. 2021, 9, 635365. [Google Scholar] [CrossRef]
- Henn, K.A.; Peduzzi, A. Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA. Forests 2023, 14, 1064. [Google Scholar] [CrossRef]
- Nowak, D.C.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, X.; Chen, L.; Chen, L.; Zhang, Y.; Liu, Y. Estimating Urban Vegetation Biomass from Sentinel-2A Image Data. Forests 2020, 11, 125. [Google Scholar] [CrossRef]
- Sousa Júnior, V.d.P.; Sparacino, J.; Espindola, G.M.D.; Assis, R.J.S.D. Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest. ISPRS Int. J. Geoinf. 2023, 12, 354. [Google Scholar] [CrossRef]
- Davies, Z.G.; Dallimer, M.; Edmondson, J.L.; Leake, J.R.; Gaston, K.J. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas. Environ. Pollut. 2013, 183, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Lin, J.; Wang, M.; Ma, M.; Lin, Y. Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous Forest with UAV Oblique Photography. Remote Sens. 2018, 10, 1849. [Google Scholar] [CrossRef]
- Seidel, D.; Fleck, S.; Leuschner, C.; Hammett, T. Review of ground-based methods to measure the distribution of biomass in forest canopies. Ann. For. Sci. 2011, 68, 225–244. [Google Scholar] [CrossRef]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Bai, L.; Shu, Y.; Guo, Y. Estimating aboveground biomass of urban trees by high resolution remote sensing image: A case study in Hengqin, Zhuhai, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 569, 012053. [Google Scholar] [CrossRef]
- Pang, Y.; Räsänen, A.; Juselius-Rajamäki, T.; Aurela, M.; Juutinen, S.; Väliranta, M.; Virtanen, T. Upscaling field-measured seasonal ground vegetation patterns with Sentinel-2 images in boreal ecosystems. Int. J. Remote Sens. 2023, 44, 4239–4261. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, L.; Zhang, T.; Li, L.; Yu, Z.; Wu, R.; Bai, L.; Xiao, J.; Chen, L. Identification of Urban Green Space Types and Estimation of Above-Ground Biomass Using Sentinel-1 and Sentinel-2 Data. Forests 2022, 13, 1077. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Mutanga, O. The Utility of Sentinel-2 Spectral Data in Quantifying Above-Ground Carbon Stock in an Urban Reforested Landscape. Remote Sens. 2021, 13, 4281. [Google Scholar] [CrossRef]
- Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef]
- Sarker, L.R.; Nichol, J.E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Environ. 2011, 115, 968–977. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N.; Suepa, T.; Phoungthong, K. Assessing the Spectral Information of Sentinel-1 and Sentinel-2 Satellites for Above-Ground Biomass Retrieval of a Tropical Forest. ISPRS Int. J. Geoinf. 2022, 11, 199. [Google Scholar] [CrossRef]
- Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797. [Google Scholar] [CrossRef]
- Su, Y.; Ma, Q.; Guo, Q. Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. Int. J. Digit. Earth 2016, 10, 307–323. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, W.; Qian, Y.; Zhang, H.; Yao, Y. Estimating aboveground carbon stocks of urban trees by synergizing ICESat-2 LiDAR with GF-2 data. Urban For. Urban Green. 2022, 76, 127728. [Google Scholar] [CrossRef]
- Sun, M.; Cui, L.; Park, J.; García, M.; Zhou, Y.; Silva, C.A.; He, L.; Zhang, H.; Zhao, K. Evaluation of NASA’s GEDI Lidar Observations for Estimating Biomass in Temperate and Tropical Forests. Forests 2022, 13, 1686. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Saatchi, S.; Ustin, S.; Balzter, H. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 159–173. [Google Scholar] [CrossRef]
- Wang, M.; Sun, R.; Xiao, Z. Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland. Remote Sens. 2018, 10, 344. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Fayad, I.; Vieilledent, G.; Bailly, J.S.; Ho Tong Minh, D. Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas. Remote Sens. 2017, 9, 213. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.-S.; Barbier, N.; Gond, V.; Hérault, B.; El Hajj, M.; Fabre, F.; Perrin, J. Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR Data: Application on French Guiana. Remote Sens. 2016, 8, 240. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Sun, G. Forest Biomass Mapping of Northeastern China Using GLAS and MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 140–152. [Google Scholar] [CrossRef]
- Chi, H.; Sun, G.; Huang, J.; Li, R.; Ren, X.; Ni, W.; Fu, A. Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data. Remote Sens. 2017, 9, 707. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zeng, W.; Song, J. Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. Remote Sens. 2017, 9, 341. [Google Scholar] [CrossRef]
- Xi, X.; Han, T.; Wang, C.; Luo, S.; Xia, S.; Pan, F. Forest above Ground Biomass Inversion by Fusing GLAS with Optical Remote Sensing Data. ISPRS Int. J. Geoinf. 2016, 5, 45. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Zeng, H.; Xi, X.; Li, G. Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecol. Indic. 2017, 78, 221–228. [Google Scholar] [CrossRef]
- Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.A.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; Guerra-Hernández, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sens. 2021, 13, 2279. [Google Scholar] [CrossRef]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Wilkes, P.; Disney, M.; Vicari, M.B.; Calders, K.; Burt, A. Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manag. 2018, 13, 10. [Google Scholar] [CrossRef]
- Shao, Z.; Zhou, W.; Deng, X.; Zhang, M.; Cheng, Q. Multilabel Remote Sensing Image Retrieval Based on Fully Convolutional Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 318–328. [Google Scholar] [CrossRef]
- Staben, G.; Lucieer, A.; Scarth, P. Modelling LiDAR derived tree canopy height from Landsat TM, ETM+ and OLI satellite imagery—A machine learning approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 666–681. [Google Scholar] [CrossRef]
- Ma, X.; Qiu, F.; Li, Q.; Shan, Y.; Cao, Y. Spatial pattern and regional types of rural settlements in Xuzhou City, Jiangsu Province, China. Chin. Geogr. Sci. 2013, 23, 482–491. [Google Scholar] [CrossRef]
- GEDI User Guide. Available online: https://lpdaac.usgs.gov/documents/986/GEDI02_UserGuide_V2.pdf (accessed on 18 December 2023).
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Space Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Ren, C.; Jiang, H.; Xi, Y.; Liu, P.; Li, H. Quantifying Temperate Forest Diversity by Integrating GEDI LiDAR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 375. [Google Scholar] [CrossRef]
- Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. 2023. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1619_Landsat8-9-Collection2-Level2-Science-Product-Guide-v5.pdf (accessed on 18 December 2023).
- Landsat 8 (L8) Data Users Handbook. 2019. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (accessed on 18 December 2023).
- Michelle, H.; Blair, J.B. Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products; Goddard Space Flight Center: Greenbelt, MD, USA, 2019. [Google Scholar]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Wu, X.; Shen, X.; Zhang, Z.; Cao, F.; She, G.; Cao, L. An Advanced Framework for Multi-Scale Forest Structural Parameter Estimations Based on UAS-LiDAR and Sentinel-2 Satellite Imagery in Forest Plantations of Northern China. Remote Sens. 2022, 14, 3023. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z. Assessing of Urban Vegetation Biomass in Combination with LiDAR and High-resolution Remote Sensing Images. Int. J. Remote Sens. 2020, 42, 964–985. [Google Scholar] [CrossRef]
- Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery. Remote Sens. 2022, 14, 1727. [Google Scholar] [CrossRef]
- Xi, Z.; Xu, H.; Xing, Y.; Gong, W.; Chen, G.; Yang, S. Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods. Remote Sens. 2022, 14, 364. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Su, X.; Wang, W. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery. Front. Plant Sci. 2023, 14, 1284235. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Zhang, M.; Wang, Z.; Gu, Z.; Wu, Y.; Shi, Y.; Lu, Z. Uncertainty Analysis of Remote Sensing Pretreatment for Biomass Estimation on Landsat OLI and Landsat ETM+. ISPRS Int. J. Geoinf. 2020, 9, 48. [Google Scholar] [CrossRef]
- Zhou, W. Study on Forest Vegetation Carbon Stock and Its Influencing Factors in Xuzhou City; Nanjing Forestry University: Nanjing, China, 2012. [Google Scholar]
- Li, J.; Li, C.; Peng, S. Methods and Applications of Biomass Estimation in Poplar Plantation Forests; Nanjing Forestry University: Nanjing, China, 2007; pp. 37–40. [Google Scholar]
- Zhu, Y. Compositional Structure of Trees and Their Carbon Storage Characteristics in the Campus Green Space of Anhui Agricultural University, China; Anhui University of Agriculture: Hefei, China, 2016. [Google Scholar]
- Kun, L.; Gao, L.; Wang, G.; Gao, F. Ginkgo biomass allocation pattern and heterogeneous growth modeling. J. Beijing For. Univ. 2017, 39, 12–20. [Google Scholar]
- Chun, R. Modeling of single wood biomass of larch in North China. Shanxi For. Sci. Technol. 2017, 46, 35–36. [Google Scholar]
- Zhang, X.; Leng, H.; Zhao, G.; Jing, J.; Tu, A.; Song, K.; Da, L. Aboveground biomass modeling of four common greening tree species in Shanghai. Nanjing For. Univ. Nanjing China 2018, 42, 141–146. [Google Scholar]
- Yang, X.; Wu, G.; Huang, D.; Yang, C. Quantitative study on the biomass accumulation pattern of Lankao paulownia trees. J. Appl. Ecol. 1999, 02, 16–19. [Google Scholar]
- Institute of Forest Ecology and Conservation, Chinese Academy of Forestry; The Nature Conservancy; State Forestry Administration Survey Planning and Design Institute; China Green Carbon Foundation. Guidelines for Measuring and Monitoring Carbon Sinks in Afforestation Projects; State Forestry Administration China: Beijing, China, 2014; 64p. [Google Scholar]
- Yao, Z. Estimation of Aboveground Carbon Stocks in Xi’an’s Urban Greenlands; North West Agriculture and Forestry University: Yangling, China, 2015. [Google Scholar]
- Dube, T.; Mutanga, O.; Adam, E.; Ismail, R. Intra-and-inter species biomass prediction in a plantation forest: Testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advanced machine learning algorithms. Sensors 2014, 14, 15348–15370. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Guo, Q.; Xue, B.; Hu, T.; Alvarez, O.; Tao, S.; Fang, J. Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 2016, 173, 187–199. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, X.; Liu, Z.; Li, P.; Tang, J.; Xie, B.; Peng, C. A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests 2022, 13, 616. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Saatchi, S.; Liknes, G.C.; Walters, B.F.; Chen, Q. Local validation of global biomass maps. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101931. [Google Scholar] [CrossRef]
- Neeti, N.; Kennedy, R. Comparison of national level biomass maps for conterminous US: Understanding pattern and causes of differences. Carbon Balance Manag. 2016, 11, 19. [Google Scholar] [CrossRef]
Image | Count | Time | Resolution | Use Bands |
---|---|---|---|---|
7 | March 2021 | 30 m | Coastal; blue; green; red; NIR; SWIR1; SWIR2 | |
2 | April 2021 | |||
3 | June 2021 | |||
Landsat-8 | 4 | August 2021 | ||
2 | October 2021 | |||
4 | November 2021 | |||
4 | December 2021 | |||
5 | January 2021 | Prioritize the use of 10 m resolution images, followed by 20 m resolution images | Coastal; blue; green; red; VRE1; VRE2; VRE3; NIR; Narrow NIR; SWIR1; SWIR2 | |
1 | February 2021 | |||
8 | March 2021 | |||
1 | April 2021 | |||
Sentinel-2 | 9 | May 2021 | ||
2 | June 2021 | |||
3 | July 2021 | |||
6 | September 2021 | |||
5 | November 2021 | |||
19 | December 2021 |
Type | Parameters | Description & Equation | Reference |
---|---|---|---|
Vegetation indices | NDVI | (NIR − Red)/(NIR + Red) | [50] |
GNDVI | (NIR − Green)/(NIR + Green) | [51] | |
EVI | 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1) | [51] | |
NBR | (NIR − SWIR)/(NIR + SWIR) | [52] | |
RVI | NIR/Red | [51] | |
DVI | NIR − Red | [53] | |
ARVI | (NIR − 2 × Red + Blue)/(NIR + 2 × Red − Blue) | [51] | |
Spectral bands | Blue | Blue band | / |
Green | Green band | / | |
Red | Red band | / | |
NIR | NIR band | / | |
SWIR | SWIR band | / | |
Coastal | Coastal band | / | |
VRE | Vegetation red edge band | / | |
Texture feature (gray level co-occurrence matrix window size: 7 × 7 pixels; gray level: 64; moving step length: 1; direction: 45°) | Mean | [54] | |
Variance | [54] | ||
Homogeneity | [54] | ||
Dissimilarity | [54] | ||
Entropy | [54] | ||
Second moment | [54] | ||
Correlation | [54] | ||
Contrast | [54] | ||
Topography | Slope | Slope in degrees | / |
Elevation | Elevation above sea level in meters | / |
Tree/Shrub Species | AGB Model (Mg) | Reference |
---|---|---|
Platycladus orientalis (L.) Franco | [56] | |
Populus L. | [57] | |
Cinnamomum camphora (L.) Presl. | [58] | |
Ginkgo biloba L. | [59] | |
Pinoideae Pilger | [60] | |
Ligustrum lucidum Ait. | [61] | |
Koelreuteria paniculata Laxm. | [61] | |
Firmiana platanifolia | [62] | |
Metasequoia glyptostroboides | [63] | |
Other hard broadlesf trees | [63] | |
Other soft broadlesf trees | [63] | |
Other broadlesf trees | [58] | |
Other coniferous trees | [58] | |
Photinia serrulata | [64] | |
Hibiscus syriacus | [64] | |
Tree-like shrub | [64] | |
Other shrubs | [64] | |
Grass | / |
Shorter Vegetation | Broadleaf Forest | Coniferous Forest | |
---|---|---|---|
Total AGB (Mg) | 25,342,735.52 | 5,866,387.54 | 904,178.41 |
Area (ha) | 754,389 | 168,768 | 19,404 |
Average AGB (Mg/ha) | 33.60 | 34.76 | 46.60 |
January–March | April–June | July–September | October–December | |
---|---|---|---|---|
Shorter vegetation (Mg/ha) | 34.56 | 33.59 | 31.01 | 59.70 |
Broadleaf forest (Mg/ha) | 40.98 | 34.76 | 29.48 | 57.42 |
Coniferous forest (Mg/ha) | 39.44 | 46.60 | 32.07 | 53.74 |
Average AGB (Mg/ha) | 36.04 | 34.29 | 30.95 | 59.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Hu, W.; Han, J.; Wei, W.; Xu, J. Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images. Remote Sens. 2024, 16, 1229. https://doi.org/10.3390/rs16071229
Zhao X, Hu W, Han J, Wei W, Xu J. Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images. Remote Sensing. 2024; 16(7):1229. https://doi.org/10.3390/rs16071229
Chicago/Turabian StyleZhao, Xuedi, Wenmin Hu, Jiang Han, Wei Wei, and Jiaxing Xu. 2024. "Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images" Remote Sensing 16, no. 7: 1229. https://doi.org/10.3390/rs16071229
APA StyleZhao, X., Hu, W., Han, J., Wei, W., & Xu, J. (2024). Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images. Remote Sensing, 16(7), 1229. https://doi.org/10.3390/rs16071229