Regional Assessment of Soil Moisture Active Passive Enhanced L3 Soil Moisture Product and Its Application in Agriculture
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methods
3.1. Datasets
3.1.1. In Situ Soil Moisture Dataset
3.1.2. SMAP Enhanced Level 3 (L3) Product
3.1.3. Auxiliary Datasets
3.2. Methods
3.2.1. Statistical Analysis Methods for the Performance of the SPL3SMP_E Product
3.2.2. Temporal and Spatial Correlation Analysis
3.2.3. Irrigation Signal Detection of the SPL3SMP_E Product
3.2.4. Drought Monitoring of Winter Wheat with the SPL3SMP_E Product
4. Results
4.1. Overall Accuracy of the SPL3SMP_E Soil Moisture Product
4.2. Spatial Distribution of the Accuracy Indicators
4.3. Spatial Aggregation Features of the Accuracy Indicators
4.4. Response of Satellite Soil Moisture Product to Irrigation
4.5. Drought Monitoring with the SPL3SMP_E Product
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ochsner, E.T.; Cosh, H.M.; Cuenca, H.R.; Cuenca, W.A.; Dorigo, C.S.; Draper, Y.H.; Yann, H.; Kerr, K.M.; Larson, E.G. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 6–8. [Google Scholar] [CrossRef]
- Mason, P.J.; Zillman, J.W.; Simmons, A. Implementation plan for the global observing system for climate in support of the UNFCCC. In Proceedings of the Conference of the Parties (COP), Copenhagen, Denmark, 7–18 December 2009. [Google Scholar]
- Li, Y.; Liu, D.; Li, T.; Fu, Q.; Liu, D.; Hou, R.J.; Meng, F.Q.; Li, M.; Li, Q.L. Responses of spring soil moisture of different land use types to snow cover in Northeast China under climate change background. J. Hydrol. 2022, 608, 127610. [Google Scholar] [CrossRef]
- Cao, M.; Chen, M.; Liu, J.; Liu, Y.L. Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain. Agric. Water Manag. 2022, 263, 107450. [Google Scholar] [CrossRef]
- Vincent, H.; Alexis, B.; Philippe, C.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 2021, 592, 7852. [Google Scholar]
- Chen, P.; Duan, Y.; Liang, J. Soil Moisture Extraction Based on Time-Frequency Analysis. In Proceedings of the International Conference in Communications, Seoul, Republic of Korea, 16–20 May 2022; Springer Nature Singapore: Singapore, 2022. [Google Scholar]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 555, 112301. [Google Scholar] [CrossRef]
- Luo, S. Dedicated Satellite Remote Sensing Combined with Global Navigation Satellite System Data Used to Remotely Measure the Status of Land Desertification; Yan’an University, School of Physics and Electronics Information: Yan’an, China, 2022. [Google Scholar]
- Ma, Y.; Zhu, W.; Zhang, Z.; Chen, H.; Zhao, G.; Liu, P. Fusion level of satellite and UAV image data for soil salinity inversion in the coastal area of the Yellow River Delta. Int. J. Remote Sens. 2022, 43, 7039–7063. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Liu, Y. Soil moisture retrieval from remote sensing. J. Beijing Norm. Univ. 2020, 56, 474–481. [Google Scholar]
- Qin, X.D.; Pang, Z.G.; Jiang, W.; Feng, T.; Fu, J. Progress and development trend of soil moisture microwave remote sensing retrieval method. J. Geo-Inf. Sci. 2021, 23, 1728–1742. [Google Scholar]
- Colliander, A.; Reichle, R.H.; Crow, W.T.; Chen, F.; Chan, S.V.; Das, N.N.; Bindlish, R.; Chaubell, J.; Kim, S. Validation of soil moisture data products from the NASA SMAP mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 364–392. [Google Scholar] [CrossRef]
- Kerr, Y.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Parrens, M.; Molero, B.; Leroux, D.; Bircher, S.; Mahmoodi, A.; Mialon, A.; Richaume, P.; et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ. 2016, 180, 40–63. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, G.E.; O’Neill, P.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Figa-Saldaña, J.; Wilson, J.J.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Int. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Derin, Y.; Anagnostou, E.; Anagnostou, M.N.; Kalogiros, J.; Casella, D.; Marra, A.C.; Panegrossi, G.; Sanò, P. Passive Microwave Rainfall Error Analysis Using High-Resolution X-Band Dual-Polarization Radar Observations in Complex Terrain. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2565–2586. [Google Scholar] [CrossRef]
- Liu, X.G.; Hui, H.Z. Experimental Study of C Band Passive Microwave Remote Sensing of Soil Moisture. Appl. Mech. Mater 2013, 13, 477–478. [Google Scholar]
- Ye, N.; Walker, J.P.; Yeo, I.Y.; Jackson, T.J.; Kerr, Y.; Kim, E.; Mcgrath, A.; Popstefanija, I.; Goodberlet, M.; Hills, J. Toward P-Band Passive Microwave Sensing of Soil Moisture. IEEE Geosci. Remote Sens. Lett. 2020, 18, 504–508. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Li, X.J.; Frappart, F.; Fan, L.; Al-Yaari, A.; De Lannoy, G.; Liu, X.; Wang, M.; Le Masson, E.; Moisy, C. SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives. Remote Sens. Environ. 2021, 254, 112238. [Google Scholar] [CrossRef]
- Ma, H.; Li, X.; Zeng, J.; Zhang, X.; Dong, J.; Chen, N.; Fan, L.; Sadeghi, M.; Frappart, F.; Liu, X. An assessment of L-band surface soil moisture products from SMOS and SMAP in the tropical areas. Remote Sens. Environ. 2023, 284, 113344. [Google Scholar] [CrossRef]
- Tian, S.; Renzullo, L.J.; Pipunic, R.C.; Lerat, J.; Sharples, W.; Donnelly, C. Satellite soil moisture data assimilation for improved operational continental water balance prediction. Hydrol. Earth Syst. Sci. 2021, 25, 4567–4584. [Google Scholar] [CrossRef]
- Wen, Y.; Zhao, J.; Zhu, G.; Xu, R.; Yang, J. Evaluation of the RF-Based Downscaled SMAP and SMOS Products Using Multi-Source Data over an Alpine Mountains Basin, Northwest China. Water 2021, 13, 2875. [Google Scholar] [CrossRef]
- Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.P. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens 2017, 9, 457. [Google Scholar] [CrossRef]
- Chan, K.S.; Bindlish, R.; O’Neill, E.P.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, H.; Gao, Y.; Zhang, Q. Evaluation of Remote Sensing and Reanalysis Products for Global Soil Moisture Characteristics. Sustainability 2023, 15, 9112. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Zhu, A.X.; Duan, Z. Spatial evaluation of L-band satellite-based soil moisture products in the upper Huai River basin of China. Eur. J. Remote Sens. 2019, 52, 194–205. [Google Scholar] [CrossRef]
- Kim, S.; Dong, J.; Sharma, A. A triple collocation-based comparison of three L-band soil moisture datasets, SMAP, SMOS-IC, and SMOS, over varied climates and land covers. Front. Environ. Sci. 2021, 3, 693172. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.S.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The Evaluation of SMAP Enhanced Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau. Remote Sens. 2018, 10, 535. [Google Scholar] [CrossRef]
- Lawston, M.P.; Santanello, A.J.; Kumar, V.S. Irrigation Signals Detected From SMAP Soil Moisture Retrievals. Geophys. Res. Lett. 2017, 44, 11.860–11.867. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, A.X. Extraction of Irrigation Signals by Using SMAP Soil Moisture Data. Remote Sens 2021, 13, 2142. [Google Scholar] [CrossRef]
- Dar, I.; Qadir, J.; Shukla, A. Estimation of LST from Multi-Sensor Thermal Remote Sensing Data and Evaluating the Influence of Sensor Characteristics. Ann. GIS 2019, 25, 263–281. [Google Scholar] [CrossRef]
- Dari, J.; Brocca, L.; Quintana-Seguí, P.; Casadei, S.; Escorihuela, M.J.; Stefan, V.; Morbidelli, R. Double-scale analysis on the detectability of irrigation signals from remote sensing soil moisture over an area with complex topography in central Italy. Adv. Water Resour. 2022, 161, 104130. [Google Scholar] [CrossRef]
- Gómez, D.G.; Ochoa, C.G.; Godwin, D.; Tomasek, A.A.; Re, M.I.Z. Soil Moisture and Water Transport through the Vadose Zone and into the Shallow Aquifer: Field Observations in Irrigated and Non-Irrigated Pasture Fields. Land 2022, 11, 2029. [Google Scholar] [CrossRef]
- Pascal, C.; Ferrant, S.; Rodriguez-Fernandez, N.; Kerr, Y.; Selles, A.; Merlin, O. Indicator of flood-irrigated crops from SMOS and SMAP soil moisture products in southern India. IEEE Geosci. 2023, 20, 4500205. [Google Scholar] [CrossRef]
- Mladenova, E.I.; Bolten, D.J.; Crow, W.; Crow, W.; Sazib, N.; Reynolds, C. Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals into a Global Soil Water Balance Model. Front. Big Data 2020, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of Satellite and Reanalysis Soil Moisture Products over Southwest China Using Ground-Based Measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef]
- Lorenz, C.; Montzka, C.; Jagdhuber, T.; Laux, P.; Kunstmann, H. Long-Term and High-Resolution Global Time Series of Brightness Temperature from Copula-Based Fusion of SMAP Enhanced and SMOS Data. Remote Sens. 2018, 10, 1842. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; et al. Evaluation of the validated Soil Moisture product from the SMAP radiometer. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 125–128. [Google Scholar]
- O’Neill, P.; Chan, E. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture; NASA/SMAP/SPL3SMP_E/005; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar]
- Deng, K.; Petropoulos, G.P.; Bao, Y.; Pavlides, A.; Chaibou, A.S.; Habtemicheal, B.A. An Examination of the SMAP Operational Soil Moisture Products Accuracy at the Tibetan Plateau. Remote Sens. 2022, 24, 6255. [Google Scholar] [CrossRef]
- Khare, S.; Latifi, H.; Khare, S. Vegetation Growth Analysis of UNESCO World Heritage Hyrcanian Forests Using Multi-Sensor Optical Remote Sensing Data. Remote Sens 2021, 13, 3965. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Wang, Z.; Che, T.; Zhao, T.; Crow, W.T. Evaluation of SMAP, SMOS, and AMSR2 soil moisture products based on distributed ground observation network in cold and arid regions of China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8955–8970. [Google Scholar] [CrossRef]
- Kumar, S.V.; Peters-Lidard, C.D.; Santanello, J.A.; Reichle, R.H.; Draper, C.S.; Koster, R.D.; Nearing, G.; Jasinski, M.F. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci. 2015, 19, 4463–4478. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Zheng, D.; Zhang, L.; Zhu, G. Estimation of Global Irrigation Water Use by the Integration of Multiple Satellite Observations. Water Resour. Res. 2022, 58, e2021WR030031. [Google Scholar] [CrossRef]
- Li, X.; Xin, X.; Jiao, J.; Peng, Z.; Zhang, H.; Shao, S.; Liu, Q. Estimating Subpixel Surface Heat Fluxes through Applying Temperature-Sharpening Methods to MODIS Data. Remote Sens. 2017, 9, 836. [Google Scholar] [CrossRef]
- Li, X.; Wigneron, J.P.; Frappart, F.; De Lannoy, G.; Fan, L.; Zhao, T.J.; Gao, L.; Tao, S.L.; Ma, H.L.; Peng, Z.Q. The first global soil moisture and vegetation optical depth product retrieved from fused SMOS and SMAP L-band observations. Remote Sens. Environ. 2022, 282, 113272. [Google Scholar] [CrossRef]
- Kim, H.; Parinussa, R.; Konings, A.; Wagner, W.; Cosh, M.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275. [Google Scholar] [CrossRef]
- Nadeem, A.A.; Zha, Y.; Shi, L.; Ran, G.; Ali, S.; Jahangir, Z.; Afzal, M.; Awais, M. Multi-Scale Assessment of SMAP Level 3 and Level 4 Soil Moisture Products over the Soil Moisture Network within the ShanDian River (SMN-SDR) Basin, China. Remote Sens. 2022, 14, 982. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, J.T.; Berg, A.; Bosch, D.D.; Caldwell, T.; Chan, S.; Cosh, M.H.; Collins, C.H.; Martínez-Fernández, J.; McNairn, H. Effect of Rainfall Events on SMAP Radiometer-Based Soil Moisture Accuracy Using Core Validation Sites. J. Hydrometeorol. 2020, 21, 255–264. [Google Scholar] [CrossRef]
- Gemechu, M.G.; Hulluka, T.A.; Wakjira, Y.C. Analysis of Spatiotemporal Variability of Water Productivity in Ethiopian Sugar Estates: Using Open Access Remote Sensing Source. Ann. GIS 2020, 26, 395–405. [Google Scholar] [CrossRef]
- Sawadogo, A.; Kouadio, L.; Traoré, F.; Zwart, S.J.; Hessels, T.; Gündogdu, K.S. Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS Int. J. Geoinf. 2020, 9, 484. [Google Scholar] [CrossRef]
- Price, K.; Jackson, R.C.; Parker, J.A. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. J. Hydrol. 2009, 383, 256–268. [Google Scholar] [CrossRef]
- Masayasu, M.; Supranee, S.; Mallika, S.; Koshi, Y.; Koki, H.; Somsak, S. Impact of changes in the relationship between salinity and soil moisture on remote sensing data usage in northeast Thailand. Hydrol. Res. Lett. 2022, 16, 54–58. [Google Scholar]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Ma, J.; Li, J.; Li, X.; Wang, H.; Chen, S.; Zang, W. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data. Remote Sens. 2017, 9, 292. [Google Scholar] [CrossRef]
Metric | Symbol | Definition | Range | Perfect Score |
---|---|---|---|---|
Mean Difference | MD | 0 | ||
Root Mean Square Error | RMSE | 0 | ||
Unbiased Root Mean Square Error | ubRMSE | 0 | ||
Pearson Correlation Coefficient | R | 1 |
Grade | Type | Relative Soil Moisture at Depth of 20 cm |
---|---|---|
1 | No drought | 60% < RSM |
2 | Mild drought | 50% < RSM ≤ 60% |
3 | Moderate drought | 40% < RSM ≤ 50% |
4 | Severe drought | 30% < RSM ≤ 40% |
5 | Extreme drought | RSM ≤ 30% |
Symbol | MD (m3/m3) | RMSE (m3/m3) | ubRMSE (m3/m3) | R | |
---|---|---|---|---|---|
Year | |||||
2017 | −0.08 | 0.13 | 0.05 | 0.42 | |
2018 | −0.07 | 0.13 | 0.05 | 0.38 | |
2019 | −0.06 | 0.12 | 0.04 | 0.28 | |
2020 | −0.07 | 0.12 | 0.04 | 0.44 | |
Overall accuracy | −0.07 | 0.125 | 0.045 | 0.38 |
Symbol | K (Degree of Freedom) | F | P |
---|---|---|---|
MD | 7 | 0.50 | 0.70 |
RMSE | 7 | 0.43 | 0.75 |
ubRMSE | 7 | 0.72 | 0.59 |
R | 7 | 2.77 | 0.18 |
MD | RMSE | ubRMSE | R | ||
---|---|---|---|---|---|
2017 | Moran’s-I | 0.17 | 0.05 | 0.10 | 0.36 |
Z-score | 2.82 | 2.27 | 2.00 | 4.08 | |
2018 | Moran’s-I | 0.22 | 0.04 | 0.03 | 0.26 |
Z-score | 2.64 | 2.33 | 3.68 | 2.99 | |
2019 | Moran’s-I | 0.30 | 0.07 | 0.07 | 0.42 |
Z-score | 3.57 | 4.16 | 2.18 | 4.72 | |
2020 | Moran’s-I | 0.33 | 0.12 | 0.01 | 0.32 |
Z-score | 3.91 | 1.99 | 2.40 | 3.66 |
Irrigation Time | SM the Day before (cm3/cm3) P the Day before (mm) | SM on the Day (cm3/cm3) P on the Day (mm) | SM the Day after (cm3/cm3) P the Day after (mm) | The Satellite Captures or Not (Y/N) |
---|---|---|---|---|
5 March 2017 | 0.19 | 0.35 | 0.34 | Y |
0 | 0 | 0 | ||
1 May 2017 | 0.17 | 0.36 | 0.36 | Y |
0 | 0 | 0 | ||
19 November 2017 | 0.17 | 0.19 | 0.22 | Y |
0 | 0 | 0 | ||
20 January 2018 | 0.24 | 0.23 | 0.29 | Y |
0 | 0 | 0 | ||
8 March 2018 | 0.24 | 0.23 | 0.31 | Y |
0 | 0 | 0 | ||
9 May 2018 | 0.14 | 0.12 | 0.32 | Y |
0 | 0 | 0 | ||
25 October 2018 | 0.15 | 0.15 | 0.32 | Y |
0 | 0.50 | 0 | ||
24 January 2019 | 0.28 | 0.26 | 0.25 | N |
0.10 | 0 | 0 | ||
30 March 2019 | 0.15 | 0.15 | 0.33 | Y |
0 | 0 | 0 | ||
19 May 2019 | 0.16 | 0.15 | 0.32 | Y |
0 | 0 | 0 | ||
21 March 2020 | 0.19 | 0.19 | 0.34 | Y |
0 | 0 | 0 | ||
20 April 2020 | 0.24 | 0.22 | 0.20 | N |
0.80 | 0 | 0 | ||
19 May 2020 | 0.20 | 0.18 | 0.17 | N |
0 | 0 | 0 | ||
8 June 2020 | 0.10 | 0.10 | 0.32 | Y |
0 | 0 | 0 | ||
25 October 2020 | 0.17 | 0.17 | 0.32 | Y |
0 | 0 | 0 |
Proportion of Cultivated | Proportion of Forest | Proportion of Grass | Proportion of Water | Proportion of Building | NDVI | |
---|---|---|---|---|---|---|
MD | 0.47 | −0.16 | −0.10 | −0.27 | 0.48 | −0.22 |
R | 0.32 | −0.05 | −0.18 | 0.01 | 0.35 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Tian, G.; Wu, H.; Ding, M.; Zhu, A.-X.; Ma, T. Regional Assessment of Soil Moisture Active Passive Enhanced L3 Soil Moisture Product and Its Application in Agriculture. Remote Sens. 2024, 16, 1225. https://doi.org/10.3390/rs16071225
Zhu L, Tian G, Wu H, Ding M, Zhu A-X, Ma T. Regional Assessment of Soil Moisture Active Passive Enhanced L3 Soil Moisture Product and Its Application in Agriculture. Remote Sensing. 2024; 16(7):1225. https://doi.org/10.3390/rs16071225
Chicago/Turabian StyleZhu, Liming, Guizhi Tian, Huifeng Wu, Maohua Ding, A-Xing Zhu, and Tianwu Ma. 2024. "Regional Assessment of Soil Moisture Active Passive Enhanced L3 Soil Moisture Product and Its Application in Agriculture" Remote Sensing 16, no. 7: 1225. https://doi.org/10.3390/rs16071225
APA StyleZhu, L., Tian, G., Wu, H., Ding, M., Zhu, A. -X., & Ma, T. (2024). Regional Assessment of Soil Moisture Active Passive Enhanced L3 Soil Moisture Product and Its Application in Agriculture. Remote Sensing, 16(7), 1225. https://doi.org/10.3390/rs16071225