Crop Type Mapping and Winter Wheat Yield Prediction Utilizing Sentinel-2: A Case Study from Upper Thracian Lowland, Bulgaria
Abstract
:1. Introduction
- Classifying and mapping the main crop types in the study area. For that purpose, different classification algorithms were built, and their performance was compared over different crop growth seasons.
- Modeling and mapping winter wheat yields in the study area. The winter wheat fields were identified using the crop mask created from the best-performing classification algorithm. Yields were predicted with regression models calibrated with in situ data collected in the Parvomay study area.
2. Materials and Methods
2.1. Study Area
2.2. Crop Type Identification
2.2.1. Crops Reference Dataset
2.2.2. Satellite Imagery Dataset and Pre-Processing
2.2.3. Classification Procedure
2.3. Winter Wheat Yield Modeling
2.3.1. Yield Data
2.3.2. Vegetation Indices and Yield Modeling
3. Results and Discussion
3.1. Crop Type Identification
3.2. Winter Wheat Yield Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook 2023; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Org. Agric. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Xu, X.; Conrad, C.; Doktor, D. Optimising Phenological Metrics Extraction for Different Crop Types in Germany Using the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. 2017, 9, 254. [Google Scholar] [CrossRef]
- Lollato, R.P.; Edwards, J.T.; Ochsner, T.E. Meteorological Limits to Winter Wheat Productivity in the U.S. Southern Great Plains. F. Crop. Res. 2017, 203, 212–226. [Google Scholar] [CrossRef]
- Lang, T.; Yang, Y.; Jia, K.; Zhang, C.; You, Z.; Liang, Y. Estimation of Winter Wheat Production Potential Based on Remotely-Sensed Imagery and Process-Based Model Simulations. Remote Sens. 2020, 12, 2857. [Google Scholar] [CrossRef]
- Meng, S.; Zhong, Y.; Luo, C.; Hu, X.; Wang, X.; Huang, S. Optimal Temporal Window Selection for Winter Wheat and Rapeseed Mapping with Sentinel-2 Images: A Case Study of Zhongxiang in China. Remote Sens. 2020, 12, 226. [Google Scholar] [CrossRef]
- Shook, J.; Gangopadhyay, T.; Wu, L.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Crop Yield Prediction Integrating Genotype and Weather Variables Using Deep Learning. PLoS ONE 2021, 16, e0252402. [Google Scholar] [CrossRef]
- Venugopal, A.S.A.; Mani, J.; Mathew, R.; Williams, V. Crop Yield Prediction Using Machine Learning Algorithms. Int. J. Eng. Res. Technol. 2021, 9, 1466–1470. [Google Scholar]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef]
- Sabini, M.; Rusak, G.; Stanford, B.R. Understanding Satellite-Imagery-Based Crop Yield Predictions. Available online: http://cs231n.stanford.edu/reports/2017/pdfs/555.pdf (accessed on 16 March 2024).
- ETH Zurich Yield Prediction with Satellite Images and Machine Learning—Photogrammetry and Remote Sensing|ETH Zurich. Available online: https://prs.igp.ethz.ch/research/current_projects/yield_prediction_with_satellite_images.html (accessed on 16 March 2024).
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-Classification Corrections in Improving the Classification of Land Use/Land Cover of Arid Region Using RS and GIS: The Case of Arjuni Watershed, Gujarat, India. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A. Big GIS Analytics Framework for Agriculture Supply Chains: A Literature Review Identifying the Current Trends and Future Perspectives. Comput. Electron. Agric. 2018, 155, 103–120. [Google Scholar] [CrossRef]
- Boote, K.J.; Prasad, V.; Allen, L.H.; Singh, P.; Jones, J.W. Modeling Sensitivity of Grain Yield to Elevated Temperature in the DSSAT Crop Models for Peanut, Soybean, Dry Bean, Chickpea, Sorghum, and Millet. Eur. J. Agron. 2018, 100, 99–109. [Google Scholar] [CrossRef]
- Samaniego, L.; Schulz, K. Supervised Classification of Agricultural Land Cover Using a Modified K-NN Technique (MNN) and Landsat Remote Sensing Imagery. Remote Sens. 2009, 1, 875–895. [Google Scholar] [CrossRef]
- Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory. Nat. Stat. Learn. Theory 1995, 38, 409. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Hansen, M.; Dubayah, R.; Defries, R. Classification Trees: An Alternative to Traditional Land Cover Classifiers. Int. J. Remote Sens. 2007, 17, 1075–1081. [Google Scholar] [CrossRef]
- Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation. Remote Sens. 2019, 11, 1618. [Google Scholar] [CrossRef]
- Setiyono, T.; Nelson, A.; Holecz, F. Remote Sensing Based Crop Yield Monitoring and Forecasting. Int. Rice Res. Inst. 2014, 25, 711–716. [Google Scholar]
- Campoy, J.; Campos, I.; Villodre, J.; Bodas, V.; Osann, A.; Calera, A. Remote Sensing-Based Crop Yield Model at Field and within-Field Scales in Wheat and Barley Crops. Eur. J. Agron. 2023, 143, 126720. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Roger, J.-C.; Franch, B.; Skakun, S.; Vermote, E.; Roger, J.-C.; Franch, B. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale. AIMS Geosci. 2017, 3, 163–186. [Google Scholar] [CrossRef]
- Revill, A.; Florence, A.; MacArthur, A.; Hoad, S.P.; Rees, R.M.; Williams, M. The Value of Sentinel-2 Spectral Bands for the Assessment of Winter Wheat Growth and Development. Remote Sens. 2019, 11, 2050. [Google Scholar] [CrossRef]
- Cavalaris, C.; Megoudi, S.; Maxouri, M.; Anatolitis, K.; Sifakis, M.; Levizou, E.; Kyparissis, A. Modeling of Durum Wheat Yield Based on Sentinel-2 Imagery. Agronomy 2021, 11, 1486. [Google Scholar] [CrossRef]
- Ravirathinam, P.; Ghosh, R.; Khandelwal, A.; Jia, X.; Mulla, D.; Kumar, V. Combining Satellite and Weather Data for Crop Type Mapping: An Inverse Modelling Approach. arXiv 2024, arXiv:2401.15875. [Google Scholar]
- Cen, H.; Wan, L. Crop Yield Estimation and Prediction. In Encyclopedia of Smart Agriculture Technoogies; Zhang, Q., Ed.; Springer: Cham, Switzerland, 2023; pp. 1–13. ISBN 978-3-030-89123-7. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- GEE Google Earth Engine, Harmonized Sentinel-2 MSI Dataset. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED (accessed on 21 March 2024).
- Noi Phan, T.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Svoboda, J.; Štych, P.; Laštovička, J.; Paluba, D.; Kobliuk, N. Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia. Remote Sens. 2022, 14, 1189. [Google Scholar] [CrossRef]
- Simonetti, D.; Pimple, U.; Langner, A.; Marelli, A. Pan-Tropical Sentinel-2 Cloud-Free Annual Composite Datasets. Data Br. 2021, 39, 107488. [Google Scholar] [CrossRef]
- Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the Potential of Land Surface Phenology and Seasonal Cloud Free Composites of One Year of Sentinel-2 Imagery for Tree Species Mapping in a Mountainous Region. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102208. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Kussul, N.; Skakun, S.; Shelestov, A.; Lavreniuk, M.; Yailymov, B.; Kussul, O. Regional Scale Crop Mapping Using Multi-Temporal Satellite Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 45–52. [Google Scholar] [CrossRef]
- Vaudour, E.; Noirot-Cosson, P.E.; Membrive, O. Early-Season Mapping of Crops and Cultural Operations Using Very High Spatial Resolution Pléiades Images. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 128–141. [Google Scholar] [CrossRef]
- Jakimow, B.; Janz, A.; Thiel, F.; Okujeni, A.; Hostert, P.; van der Linden, S. EnMAP-Box: Imaging Spectroscopy in QGIS. SoftwareX 2023, 23, 101507. [Google Scholar] [CrossRef]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An Assessment of Support Vector Machines for Land Cover Classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Introduction; Springer: New York, NY, USA, 2013; Volume 103, pp. 1–14. [Google Scholar]
- Kwak, G.H.; Park, N.W. Impact of Texture Information on Crop Classification with Machine Learning and UAV Images. Appl. Sci. 2019, 9, 643. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Lancashire, P.; Bleiholder, H.; van den Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Shanin, J. Methodology of Field Experiment; BAS—Bulgarian Acadaemy of Sciences: Sofia, Bulgaria, 1977. [Google Scholar]
- ISO Cereals and Legumes. Determination of the Mass of 1000 Grains (БДC EN ISO 520:2010). Available online: https://bds-bg.org/bg/project/show/bds:proj:81894 (accessed on 21 March 2024).
- GDAL/OGR Contributors GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. Available online: https://gdal.org/index.html (accessed on 21 March 2024).
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1973, 1, 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.; Kim, M.; de Colstoun, E.B.; McMurtrey, J. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Hernandez, I.; Benevides, P.; Costa, H.; Caetano, M. EXPLORING SENTINEL-2 FOR LAND COVER AND CROP MAPPING IN PORTUGAL. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 83–89. [Google Scholar] [CrossRef]
- Tran, K.H.; Zhang, H.K.; McMaine, J.T.; Zhang, X.; Luo, D. 10 m Crop Type Mapping Using Sentinel-2 Reflectance and 30 m Cropland Data Layer Product. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102692. [Google Scholar] [CrossRef]
- Zhao, H.; Duan, S.; Liu, J.; Sun, L.; Reymondin, L. Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information. Remote Sens. 2021, 13, 2790. [Google Scholar] [CrossRef]
- Rußwurm, M.; Courty, N.; Emonet, R.; Lefèvre, S.; Tuia, D.; Tavenard, R. End-to-End Learned Early Classification of Time Series for in-Season Crop Type Mapping. ISPRS J. Photogramm. Remote Sens. 2023, 196, 445–456. [Google Scholar] [CrossRef]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near Real-Time Agriculture Monitoring at National Scale at Parcel Resolution: Performance Assessment of the Sen2-Agri Automated System in Various Cropping Systems around the World. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Han, D.; Liu, S.; Du, Y.; Xie, X.; Fan, L.; Lei, L.; Li, Z.; Yang, H.; Yang, G. Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery. Sensors 2019, 19, 4013. [Google Scholar] [CrossRef] [PubMed]
- Harfenmeister, K.; Itzerott, S.; Weltzien, C.; Spengler, D.; Liao, C.; Huang, X.; Zhang, M.; Shang, J. Detecting Phenological Development of Winter Wheat and Winter Barley Using Time Series of Sentinel-1 and Sentinel-2. Remote Sens. 2021, 13, 5036. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.H.; Wu, Y.; et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Brock Porth, C.; Porth, L.; Zhu, W.; Boyd, M.; Tan, K.S.; Liu, K. Remote Sensing Applications for Insurance: A Predictive Model for Pasture Yield in the Presence of Systemic Weather. N. Am. Actuar. J. 2020, 24, 333–354. [Google Scholar] [CrossRef]
- Benami, E.; Jin, Z.; Carter, M.R.; Ghosh, A.; Hijmans, R.J.; Hobbs, A.; Kenduiywo, B.; Lobell, D.B. Uniting Remote Sensing, Crop Modelling and Economics for Agricultural Risk Management. Nat. Rev. Earth Environ. 2021, 2, 140–159. [Google Scholar] [CrossRef]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Seelan, S.K.; Baumgartner, D.; Casady, G.M.; Nangia, V.; Seielstad, G.A. Empowering Farmers with Remote Sensing Knowledge: A Success Story from the US Upper Midwest. Geocarto Int. 2007, 22, 141–157. [Google Scholar] [CrossRef]
Scenario 1—April 2021 | Scenario 2—June 2021 | Scenario 3—Multitemporal (April and June 2021) | |||
---|---|---|---|---|---|
Class | Pixels | Class | Pixels | Class | Pixels |
Winter wheat | 1000 | Sunflower | 1000 | Winter wheat | 1000 |
Alfalfa | 1000 | Alfalfa | 669 | Sunflower | 1000 |
Pastures/meadows | 415 | Pastures/meadows | 400 | Alfalfa | 1000 |
Winter rapeseed | 835 | Maize | 1000 | Pastures/meadows | 532 |
Other crops | 1000 | Other crops | 1000 | Maize | 1000 |
Winter rapeseed | 1000 | ||||
Other crops | 1000 |
Vegetation Index | Formula | Reference |
---|---|---|
NDVI | (B8 − B4)/(B8 + B4) | Rouse et al. [55] |
OSAVI | (1 + 0.16) × (B8 − B4)/(B8 + B4 + 0.16) | Rondeaux et al. [56] |
EVI | 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1) | Huete et al. [57] |
EVI2 | 2.5 × (B8 − B4)/(B8 + 2.4 × B4 + 1) | Daughtry et al. [58] |
GDVI | B8 − B3 | Gitelson et al. [59] |
CIrededge | B7/B5 − 1 | Gitelson et al. [60] |
CIgreen | B7/B3 − 1 | Gitelson et al. [60] |
reNDVI | (B8 − B6)/(B8 + B6) | Gitelson and Merzlyak [61] |
greenNDVI | (B8 − B3)/(B8 + B3) | Gitelson et al. [62] |
NDRE | (B6 − B5)/(B6 + B5) | Gitelson and Merzlyak [61] |
SVM | RF | |
---|---|---|
F1 Accuracy (%) | ||
Winter wheat | 91.4 | 90.4 |
Alfalfa | 44.7 | 44.0 |
Pastures and meadows | 74.3 | 70.2 |
Winter rapeseed | 98.3 | 98.2 |
Other crops | 83.2 | 84.4 |
Overall Accuracy (%) | ||
82.4 | 82.1 |
Reference | ||||||
---|---|---|---|---|---|---|
Classification | Winter Wheat | Alfalfa | Pastures and Meadows | Winter Rapeseed | Other Crops | UA (%) |
Winter wheat | 432,227 | 3013 | 1069 | 8 | 51,876 | 88.5 |
Alfalfa | 11,958 | 49,807 | 15,559 | 168 | 79,069 | 31.8 |
Pastures and meadows | 2434 | 2425 | 60,625 | 19 | 19,420 | 71.4 |
Winter rapeseed | 84 | 10 | 2 | 13,918 | 19 | 99.2 |
Other crops | 11,065 | 11,039 | 1056 | 170 | 429,650 | 94.8 |
PA (%) | 94.4 | 75.1 | 77.4 | 97.4 | 74.1 | |
OA (%) | 82.4 |
SVM | RF | |
---|---|---|
F1 Accuracy (%) | ||
Sunflower | 88.9 | 87.9 |
Alfalfa | 55.1 | 48.4 |
Pastures and meadows | 69.6 | 54.4 |
Maize | 72.3 | 64.9 |
Other crops | 89.1 | 88.5 |
Overall Accuracy (%) | ||
83.2 | 80.3 |
Reference | ||||||
---|---|---|---|---|---|---|
Classification | Sunflower | Alfalfa | Pastures and Meadows | Maize | Other Crops | UA (%) |
Sunflower | 295,247 | 5935 | 1489 | 3484 | 29,522 | 88.0 |
Alfalfa | 17,604 | 59,596 | 19,436 | 3689 | 34,317 | 44.3 |
Pastures and meadows | 959 | 12,555 | 56,560 | 220 | 10,759 | 69.8 |
Maize | 9311 | 1518 | 927 | 80,734 | 39,015 | 61.4 |
Other crops | 5477 | 2255 | 3129 | 3746 | 525,473 | 97.3 |
PA (%) | 89.9 | 72.8 | 69.4 | 87.9 | 82.2 | |
OA (%) | 83.2 |
SVM | RF | |
---|---|---|
F1 Accuracy (%) | ||
Winter wheat | 92.1 | 91.1 |
Sunflower | 91.2 | 90.8 |
Alfalfa | 65.5 | 56.6 |
Pastures and meadows | 78.0 | 68.7 |
Maize | 85.6 | 81.6 |
Winter rapeseed | 98.0 | 98.4 |
Other crops | 68.7 | 63.1 |
Overall Accuracy (%) | ||
85.6 | 82.5 |
Reference | ||||||||
---|---|---|---|---|---|---|---|---|
Classification | Winter Wheat | Sunflower | Alfalfa | Pastures and Meadows | Maize | Winter Rapeseed | Other Crops | UA (%) |
Winter wheat | 430,920 | 3690 | 1293 | 871 | 713 | 32 | 25,515 | 93.1 |
Sunflower | 10,940 | 325,679 | 3141 | 996 | 3820 | 19 | 8617 | 92.2 |
Alfalfa | 4226 | 11,270 | 51,783 | 9789 | 2019 | 246 | 14,720 | 55.1 |
Pastures and meadows | 1358 | 730 | 2920 | 56,753 | 362 | 11 | 10,053 | 78.6 |
Maize | 4222 | 6361 | 413 | 108 | 85,866 | 0 | 5706 | 83.6 |
Winter rapeseed | 16 | 3 | 1 | 0 | 0 | 10,736 | 28 | 99.6 |
Other crops | 21,199 | 13,073 | 4501 | 4765 | 5117 | 76 | 124,192 | 71.8 |
PA (%) | 91.1 | 90.3 | 80.8 | 77.4 | 87.7 | 96.5 | 65.8 | |
OA (%) | 85.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamenova, I.; Chanev, M.; Dimitrov, P.; Filchev, L.; Bonchev, B.; Zhu, L.; Dong, Q. Crop Type Mapping and Winter Wheat Yield Prediction Utilizing Sentinel-2: A Case Study from Upper Thracian Lowland, Bulgaria. Remote Sens. 2024, 16, 1144. https://doi.org/10.3390/rs16071144
Kamenova I, Chanev M, Dimitrov P, Filchev L, Bonchev B, Zhu L, Dong Q. Crop Type Mapping and Winter Wheat Yield Prediction Utilizing Sentinel-2: A Case Study from Upper Thracian Lowland, Bulgaria. Remote Sensing. 2024; 16(7):1144. https://doi.org/10.3390/rs16071144
Chicago/Turabian StyleKamenova, Ilina, Milen Chanev, Petar Dimitrov, Lachezar Filchev, Bogdan Bonchev, Liang Zhu, and Qinghan Dong. 2024. "Crop Type Mapping and Winter Wheat Yield Prediction Utilizing Sentinel-2: A Case Study from Upper Thracian Lowland, Bulgaria" Remote Sensing 16, no. 7: 1144. https://doi.org/10.3390/rs16071144
APA StyleKamenova, I., Chanev, M., Dimitrov, P., Filchev, L., Bonchev, B., Zhu, L., & Dong, Q. (2024). Crop Type Mapping and Winter Wheat Yield Prediction Utilizing Sentinel-2: A Case Study from Upper Thracian Lowland, Bulgaria. Remote Sensing, 16(7), 1144. https://doi.org/10.3390/rs16071144