Enhancing Image Alignment in Time-Lapse-Ground-Penetrating Radar through Dynamic Time Warping
Abstract
:1. Introduction
2. Materials and Methods
2.1. TL GPR Image Alignment Using DTW
2.1.1. The DTW Algorithm
- (1)
- ;
- (2)
- ;
- (3)
- for ; this element must satisfy and , then .
2.1.2. TL-GPR Image Alignment by DTW (TLIAM–DTW)
2.2. GPR Datasets for Validation
2.2.1. Forward Simulation GPR Datasets
2.2.2. Field Collected TL-GPR Datasets
2.3. GPR Data Preprocessing
2.4. Quantitative Assessment of the TLIAM-DTW Method
3. Results
3.1. Performance of the TLIAM–DTW Method for Simulation Datasets
3.1.1. Analysis of Simple Single-Root Geometric Mismatch Scenario
3.1.2. Analysis of Complex Multiple-Root Geometric Mismatch Scenario
3.2. Performance of the TLIAM–DTW Method for Field-Collected TL GPR Data
4. Discussion
4.1. The Influence of GPR Image Preprocessing on TLIAM–DTW Performance
4.2. Advantages and Limitations of the TLIAM–DTW Method
4.3. Future Outlooks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Relative Distance away from Base Root (cm) | Simulation Type | Method | MAE | RMSE |
---|---|---|---|---|
Direct | 145 | 1436 | ||
Simulation 1 | MAF | 132 | 1200 | |
5–10 | TLIAM-DTW | 13 | 185 | |
Direct | 210 | 1348 | ||
Simulation 2 | MAF | 193 | 1156 | |
TLIAM-DTW | 242 | 1378 | ||
Direct | 130 | 1364 | ||
Simulation 1 | MAF | 121 | 1138 | |
10–15 | TLIAM-DTW | 13 | 182 | |
Direct | 204 | 1328 | ||
Simulation 2 | MAF | 187 | 1134 | |
TLIAM-DTW | 161 | 841 |
References
- Butnor, J.R.; Doolittle, J.; Kress, L.; Cohen, S.; Johnsen, K.H. Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol. 2001, 21, 1269–1278. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Angermann, L.; Jackisch, C.; Allroggen, N.; Sprenger, M.; Zehe, E.; Tronicke, J.; Weiler, M.; Blume, T. Form and function in hillslope hydrology: Characterization of subsurface flow based on response observations. Hydrol. Earth Syst. Sci. 2017, 21, 3727–3748. [Google Scholar] [CrossRef]
- Jackisch, C.; Angermann, L.; Allroggen, N.; Sprenger, M.; Blume, T.; Tronicke, J.; Zehe, E. Form and function in hillslope hydrology: In situ imaging and characterization of flow-relevant structures. Hydrol. Earth Syst. Sci. 2017, 21, 3749–3775. [Google Scholar] [CrossRef]
- Hruska, J.; Čermák, J.; Šustek, S. Mapping tree root systems with ground-penetrating radar. Tree Physiol. 1999, 19, 125–130. [Google Scholar] [CrossRef]
- Kinlaw, A.; Grasmueck, M. Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: The burrowing cascade initiated by the Gopher Tortoise. Geomorphology 2012, 157–158, 108–121. [Google Scholar] [CrossRef]
- Qiu, X.; Ding, C. Radar Observation of the Lava Tubes on the Moon and Mars. Remote Sens. 2023, 15, 2850. [Google Scholar] [CrossRef]
- Lantini, L.; Tosti, F.; Giannakis, I.; Zou, L.; Benedetto, A.; Alani, A.M. An Enhanced Data Processing Framework for Mapping Tree Root Systems Using Ground Penetrating Radar. Remote Sens. 2020, 12, 3417. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Jenkinson, B.; Hopkins, D.; Ulmer, M.; Tuttle, W. Hydropedological investigations with ground-penetrating radar (GPR): Estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils. Geoderma 2006, 131, 317–329. [Google Scholar] [CrossRef]
- Doolittle, J.; Zhu, Q.; Zhang, J.; Guo, L.; Lin, H. Geophysical investigations of soil-landscape architecture and its impacts on subsurface flow. In Hydropedology: Synergistic Integration of Soil Science and Hydrology; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 413–447. [Google Scholar]
- Jia, S.; Zhang, T.; Hao, J.; Li, C.; Michaelides, R.; Shao, W.; Wei, S.; Wang, K.; Fan, C. Spatial Variability of Active Layer Thickness along the Qinghai–Tibet Engineering Corridor Resolved Using Ground-Penetrating Radar. Remote Sens. 2022, 14, 5606. [Google Scholar] [CrossRef]
- Luo, Z.; Niu, J.; Xie, B.; Zhang, L.; Chen, X.; Berndtsson, R.; Du, J.; Ao, J.; Yang, L.; Zhu, S. Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils. Forests 2019, 10, 986. [Google Scholar] [CrossRef]
- Butnor, J.R.; Doolittle, J.; Johnsen, K.H.; Samuelson, L.; Stokes, T.; Kress, L. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci. Soc. Am. J. 2003, 67, 1607–1615. [Google Scholar] [CrossRef]
- Barton, C.V.; Montagu, K.D. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol. 2004, 24, 1323–1331. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Guo, L.; Chen, J.; Lin, H. Subsurface lateral preferential flow network revealed by time-lapse ground-penetrating radar in a hillslope. Water Resour. Res. 2014, 50, 9127–9147. [Google Scholar] [CrossRef]
- Trinks, I.; Stümpel, H.; Wachsmuth, D. Monitoring water flow in the unsaturated zone using georadar. First Break. 2001, 19, 12. [Google Scholar]
- Haarder, E.B.; Looms, M.C.; Jensen, K.H.; Nielsen, L. Visualizing Unsaturated Flow Phenomena Using High-Resolution Reflection Ground Penetrating Radar. Vadose Zone J. 2011, 10, 84–97. [Google Scholar] [CrossRef]
- Robinson, J.; Buda, A.; Collick, A.; Shober, A.; Ntarlagiannis, D.; Bryant, R.; Slater, L. Electrical monitoring of saline tracers to reveal subsurface flow pathways in a flat ditch-drained field. J. Hydrol. 2020, 586, 124862. [Google Scholar] [CrossRef]
- Nyquist, J.E.; Toran, L.; Pitman, L.; Guo, L.; Lin, H. Testing the Fill-and-Spill Model of Subsurface Lateral Flow Using Ground-Penetrating Radar and Dye Tracing. Vadose Zone J. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Di Prima, S.; Winiarski, T.; Angulo-Jaramillo, R.; Stewart, R.D.; Castellini, M.; Abou Najm, M.R.; Ventrella, D.; Pirastru, M.; Giadrossich, F.; Capello, G.; et al. Detecting infiltrated water and preferential flow pathways through time-lapse ground-penetrating radar surveys. Sci. Total Environ. 2020, 726, 138511. [Google Scholar] [CrossRef] [PubMed]
- Di Prima, S.; Giannini, V.; Ribeiro Roder, L.; Giadrossich, F.; Lassabatere, L.; Stewart, R.D.; Abou Najm, M.R.; Longo, V.; Campus, S.; Winiarski, T.; et al. Coupling time-lapse ground penetrating radar surveys and infiltration experiments to characterize two types of non-uniform flow. Sci. Total Environ. 2022, 806, 150410. [Google Scholar] [CrossRef] [PubMed]
- Truss, S.; Grasmueck, M.; Vega, S.; Viggiano, D.A. Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar. Water Resour. Res. 2007, 43, 3. [Google Scholar] [CrossRef]
- Deiana, R.; Cassiani, G.; Villa, A.; Bagliani, A.; Bruno, V. Calibration of a Vadose Zone Model Using Water Injection Monitored by GPR and Electrical Resistance Tomography. Vadose Zone J. 2008, 7, 215–226. [Google Scholar] [CrossRef]
- Steelman, C.M.; Endres, A.L.; Jones, J.P. High-resolution ground-penetrating radar monitoring of soil moisture dynamics: Field results, interpretation, and comparison with unsaturated flow model. Water Resour. Res. 2012, 48, 9. [Google Scholar] [CrossRef]
- Koyama, C.N.; Liu, H.; Takahashi, K.; Shimada, M.; Watanabe, M.; Khuut, T.; Sato, M. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR. Remote Sens. 2017, 9, 580. [Google Scholar] [CrossRef]
- Allroggen, N.; van Schaik, N.L.M.B.; Tronicke, J. 4D ground-penetrating radar during a plot scale dye tracer experiment. J. Appl. Geophys. 2015, 118, 139–144. [Google Scholar] [CrossRef]
- Mangel, A.R.; Moysey, S.M.J.; Bradford, J. Reflection tomography of time-lapse GPR data for studying dynamic unsaturated flow phenomena. Hydrol. Earth Syst. Sci. 2020, 24, 159–167. [Google Scholar] [CrossRef]
- Birken, R.; Versteeg, R. Use of four-dimensional ground penetrating radar and advanced visualization methods to determine subsurface fluid migration. J. Appl. Geophys. 2000, 43, 215–226. [Google Scholar] [CrossRef]
- Ge, L.; Chen, S. Exact dynamic time warping calculation for weak sparse time series. Appl. Soft Comput. 2020, 96, 106631. [Google Scholar] [CrossRef]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; De Queiroz, G.R. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J-STARS 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Lin, H. Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the Shale Hills Catchment. Vadose Zone J. 2006, 5, 317–340. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, X. Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. Eur. J. Soil Sci. 2007, 59, 34–49. [Google Scholar] [CrossRef]
- Liu, H.; Lin, H. Frequency and Control of Subsurface Preferential Flow: From Pedon to Catchment Scales. Soil Sci. Soc. Am. J. 2015, 79, 362–377. [Google Scholar] [CrossRef]
- Giannakis, I. Realistic Numerical Modelling of Ground Penetrating Radar for Landmine Detection; University of Edinburgh: Edinburgh, UK, 2016. [Google Scholar]
- Arrow, K.J.; Hurwicz, L. Competitive stability under weak gross substitutability: The “Euclidean distance” approach. Int. Econ. Rev. 1960, 1, 38–49. [Google Scholar] [CrossRef]
- Itakura, F. Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 1975, 23, 67–72. [Google Scholar] [CrossRef]
- Hale, D. Dynamic warping of seismic images. Geophysics 2013, 78, S105–S115. [Google Scholar] [CrossRef]
- Guo, L.; Mount, G.J.; Hudson, S.; Lin, H.; Levia, D. Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots. Geoderma 2020, 357, 113953. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Doolittle, J. Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils. Geoderma 2014, 213, 560–569. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H.; Fan, B.; Cui, X.; Chen, J. Forward simulation of root’s ground penetrating radar signal: Simulator development and validation. Plant Soil 2013, 372, 487–505. [Google Scholar] [CrossRef]
- Holden, J. Hydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection. Earth Surf. Process. Landforms. 2004, 29, 437–442. [Google Scholar] [CrossRef]
- Guo, L.; Chen, J.; Cui, X.; Fan, B.; Lin, H. Application of ground penetrating radar for coarse root detection and quantification: A review. Plant Soil 2012, 362, 1–23. [Google Scholar] [CrossRef]
- Butnor, J.R.; Samuelson, L.J.; Stokes, T.A.; Johnsen, K.H.; Anderson, P.H.; González-Benecke, C.A. Surface-based GPR underestimates below-stump root biomass. Plant Soil. 2016, 402, 47–62. [Google Scholar] [CrossRef]
Medium | Water Content 1 | Relative Dielectric Constant | Static Conductivity (S·m−1) |
---|---|---|---|
Root (diameter = 0.02 m) | 90% | 13.08 | 0 |
Background soil | 6% | 4.12 | 0.01 |
Saturated soil 2 | 44% | 44.60 | 0.64 |
Variables 1 | Relative Distance away from Base Root (cm) | |||
---|---|---|---|---|
0–5 | 5–10 | 10–15 | 15–20 | |
H1 | −5 | −8 | −14 | −16 |
V1 | +1 | −9 | 13 | −18 |
H2 | −3 | −7 | −11 | −17 |
V2 | 0 | 6 | 11 | 16 |
H3 | 3 | 9 | 14 | 17 |
V3 | 3 | −6 | −12 | 17 |
H4 | 2 | 10 | 12 | 18 |
V4 | 4 | −6 | 11 | −16 |
H5 | 5 | 10 | 13 | 20 |
V5 | −4 | 10 | −15 | 19 |
Offset Type | Geometric Offset Distance (cm) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Horizontal offset 1 | +1 | +5 | +3 | −2 | −4 |
Vertical offset 2 | +4 | +3 | −3 | −2 | +2 |
Relative Distance away from Base Root (cm) | Simulation Type | Method | MAE | RMSE |
---|---|---|---|---|
Direct | 112 | 972 | ||
Simulation 1 | MAF | 103 | 828 | |
0–5 | TLIAM-DTW | 16 | 304 | |
Direct | 202 | 1355 | ||
Simulation 2 | MAF | 195 | 1235 | |
TLIAM-DTW | 147 | 1124 | ||
Direct | 124 | 893 | ||
Simulation 1 | MAF | 115 | 1033 | |
15–20 | TLIAM-DTW | 12 | 174 | |
Direct | 226 | 1379 | ||
Simulation 2 | MAF | 216 | 1225 | |
TLIAM-DTW | 157 | 787 |
Method | MAE | RMSE |
---|---|---|
Direct | 234 | 1145 |
MAF | 215 | 1018 |
TLIAM-DTW | 43 | 350 |
Number of Marker A-Scan in the Background Image | Number of Corresponding A-Scan in the TL Image | Simulation 1 | Simulation 2 | ||
---|---|---|---|---|---|
Different Methods | Different Methods | ||||
Pearson Correlation Coefficient | DTW Distance | Pearson Correlation Coefficient | DTW Distance | ||
10 | 10 | 10 | 10 | 10 | 10 |
20 | 20 | 20 | 20 | 20 | 20 |
30 | 30 | 30 | 30 | 30 | 30 |
40 | 40 | 40 | 40 | 40 | 40 |
50 | 55 | 53 | 55 | 51 | 55 |
60 | 65 | 64 | 65 | 62 | 65 |
70 | 75 | 74 | 75 | 73 | 75 |
80 | 85 | 84 | 85 | 83 | 85 |
90 | 95 | 94 | 95 | 93 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Huang, T.; Cui, X.; Zhang, Y.; Shi, J.; Jiang, Y.; Li, X.; Guo, L. Enhancing Image Alignment in Time-Lapse-Ground-Penetrating Radar through Dynamic Time Warping. Remote Sens. 2024, 16, 1040. https://doi.org/10.3390/rs16061040
Wen J, Huang T, Cui X, Zhang Y, Shi J, Jiang Y, Li X, Guo L. Enhancing Image Alignment in Time-Lapse-Ground-Penetrating Radar through Dynamic Time Warping. Remote Sensing. 2024; 16(6):1040. https://doi.org/10.3390/rs16061040
Chicago/Turabian StyleWen, Jiahao, Tianbao Huang, Xihong Cui, Yaling Zhang, Jinfeng Shi, Yanjia Jiang, Xiangjie Li, and Li Guo. 2024. "Enhancing Image Alignment in Time-Lapse-Ground-Penetrating Radar through Dynamic Time Warping" Remote Sensing 16, no. 6: 1040. https://doi.org/10.3390/rs16061040
APA StyleWen, J., Huang, T., Cui, X., Zhang, Y., Shi, J., Jiang, Y., Li, X., & Guo, L. (2024). Enhancing Image Alignment in Time-Lapse-Ground-Penetrating Radar through Dynamic Time Warping. Remote Sensing, 16(6), 1040. https://doi.org/10.3390/rs16061040