Applications of Ground-Penetrating Radar in Asteroid and Comet Exploration
Abstract
:1. Introduction
2. Asteroid and Comet Exploration Missions
2.1. Asteroid Exploration Missions
2.1.1. Fly-By Missions
2.1.2. Surrounding and Landing Missions
2.1.3. Sample Return Missions
2.2. Comet Exploration Missions
2.2.1. Fly-By Missions
2.2.2. Surrounding and Landing Missions
2.2.3. Sample Return Missions
3. Missions Equipped with SB-GPR
3.1. Hera Mission
3.2. Rosetta Mission
3.3. Castalia Mission
3.3.1. SOURCE
3.3.2. SSR
3.4. Tianwen-2 Mission
4. Discussion
- (1)
- Use of Frequency Modulation (FM) signals: The frequency resolution of the pulsed signals used in conventional GPR is limited by the width of the pulse. The FM signal has a wide bandwidth and is compressed at the receiver end to achieve shorter pulse widths, resulting in higher resolution while maintaining penetration depth. Commonly used FM signals include BPSK-modulated signals, chirp signals, and step-frequency signals.
- (2)
- Use of multiple frequency bands: Low-frequency signals have a greater depth of penetration but lower resolution, while high-frequency signals have higher resolution but shallower penetration depth. Using multi-band signals to complement each other helps researchers to analyze the surface and internal structure of targets.
- (3)
- Use of multiple polarization channels: One of the major scientific objectives of asteroid and comet exploration missions is the search for water or ice. Unlike ordinary media, water and ice respond differently to electromagnetic waves of different polarizations, which makes the use of different polarization signals useful in determining the distribution of water and ice on a target.
- (4)
- Use of multiple explorations for synergistic signal analysis: A common synergistic approach is to use optical payload data in conjunction with radar data. Optical payloads are commonly used to construct three-dimensional models of asteroids or comets and play an important role in radar simulation efforts. Simulation is one of the important methods of radar signal processing, and for missions where real signals have been obtained, simulation can help interpret the signals. For example, the Rosetta mission determined the real part of the average permittivity of the nucleus to be 1.27 ± 0.05 and narrowed the landing area of Philae to 21 × 34 m2 by simulation. For planned missions, such as the Tianwen-2 mission, simulation can also be used to make a preliminary assessment of the effectiveness of a signal processing method. For example, in this study, two surface complexity asteroid models are constructed for the ACSR radar of the Tianwen-2 mission, and radar simulation studies are performed. The results confirm that the BP algorithm is capable of imaging asteroid models with different surface complexity, which lays the foundation for our subsequent work on internal structure analysis and dielectric constant calculation.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, W.; Yu, D. Development of Deep Space Exploration and Its Future Key Technologies. J. Deep. Space Explor. 2014, 1, 5–17. [Google Scholar]
- Li, C.; Liu, J.; Yan, W.; Feng, J.; Ren, X.; Liu, B. Overview of Scientific Objectives for Minor Planets Exploration. J. Deep. Space Explor. 2019, 6, 424–436. [Google Scholar] [CrossRef]
- Schmude, R. Comets: An Overview. In Comets and How to Observe Them; Springer: New York, NY, USA, 2010; pp. 1–52. ISBN 978-1-4419-5790-0. [Google Scholar]
- Weissman, P.; Morbidelli, A.; Davidsson, B.; Blum, J. Origin and Evolution of Cometary Nuclei. Space Sci. Rev. 2020, 216, 6. [Google Scholar] [CrossRef]
- Guilbert-Lepoutre, A.; Besse, S.; Mousis, O.; Ali-Dib, M.; Höfner, S.; Koschny, D.; Hager, P. On the Evolution of Comets. Space Sci. Rev. 2015, 197, 271–296. [Google Scholar] [CrossRef]
- Yongchun, Z.; Ziyuan, O. Development Trend Analysis of Solar System Exploration and the Scientific Vision for Future Missions. J. Deep. Space Explor. 2014, 1, 83–92. [Google Scholar]
- Lin, Y.; Zhang, Y.; Hu, S.; Xu, Y.; Zhou, W.; Li, S.; Yang, W.; Gao, Y.; Li, M.; Yin, Q.; et al. Concepts of the Small Body Sample Return Missions—The 1st 10 Million Year Evolution of the Solar System. Space Sci. Rev. 2020, 216, 45. [Google Scholar] [CrossRef]
- Lei, Z.; Yan, S.; Yongchun, Z. Ground-Based Radar and Its Applications in Remote Sensing of the Solar System Planets. Prog. Astron. 2009, 27, 373–382. [Google Scholar]
- Wang, R.; Yan, S. A Review of Application of Surface Penetrating Radar in the Moon and Deep-Space Exploration. Astron. Res. Technol. 2020, 17, 492–512. [Google Scholar]
- Hong, T.; Su, Y.; Dai, S.; Zhang, Z.; Du, W.; Liu, C.; Liu, S.; Wang, R.; Ding, C.; Li, C. An Improved Method of Surface Clutter Simulation Based on Orbiting Radar in Tianwen-1 Mars Exploration. Radio Sci. 2022, 57, e2022RS007491. [Google Scholar] [CrossRef]
- Zou, L.; Liu, H.; Alani, A.M.; Fang, G. Surface Permittivity Estimation of Southern Utopia Planitia by High-Frequency RoPeR in Tianwen-1 Mars Exploration. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–9. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, K.; Ding, X. China’s Ambitions and Challenges for Asteroid–Comet Exploration. Nat. Astron. 2021, 5, 730–731. [Google Scholar] [CrossRef]
- Belton, M.J.S.; Chapman, C.R.; Klaasen, K.P.; Harch, A.P.; Thomas, P.C.; Veverka, J.; McEwen, A.S.; Pappalardo, R.T. Galileo’s Encounter with 243 Ida: An Overview of the Imaging Experiment. Icarus 1996, 120, 1–19. [Google Scholar] [CrossRef]
- Belton, M.J.S.; Veverka, J.; Thomas, P.; Helfenstein, P.; Simonelli, D.; Chapman, C.; Davies, M.E.; Greeley, R.; Greenberg, R.; Head, J.; et al. Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid. Science 1992, 257, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Veverka, J.; Thomas, P.; Harch, A.; Clark, B.; Bell, J.F.; Carcich, B.; Joseph, J.; Murchie, S.; Izenberg, N.; Chapman, C.; et al. NEAR Encounter with Asteroid 253 Mathilde: Overview. Icarus 1999, 140, 3–16. [Google Scholar] [CrossRef]
- Buratti, B.J.; Britt, D.T.; Soderblom, L.A.; Hicks, M.D.; Boice, D.C.; Brown, R.H.; Meier, R.; Nelson, R.M.; Oberst, J.; Owen, T.C.; et al. 9969 Braille: Deep Space 1 Infrared Spectroscopy, Geometric Albedo, and Classification. Icarus 2004, 167, 129–135. [Google Scholar] [CrossRef]
- Doody, D. Cassini/Huygens: Heavily Instrumented Flight Systems Approaching Saturn and Titan. In Proceedings of the 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), Big Sky, MT, USA, 8–15 March 2003; Volume 8, pp. 8_3637–8_3646. [Google Scholar]
- Duxbury, T.C.; Newburn, R.L.; Acton, C.H.; Carranza, E.; McElrath, T.P.; Ryan, R.E.; Synnott, S.P.; You, T.H.; Brownlee, D.E.; Cheuvront, A.R.; et al. Asteroid 5535 Annefrank Size, Shape, and Orientation: Stardust First Results: BRIEF REPORT. J. Geophys. Res. 2004, 109, e002108. [Google Scholar] [CrossRef]
- Schulz, R.; Sierks, H.; Küppers, M.; Accomazzo, A. Rosetta Fly-by at Asteroid (21) Lutetia: An Overview. Planet. Space Sci. 2012, 66, 2–8. [Google Scholar] [CrossRef]
- Keller, H.U.; Barbieri, C.; Koschny, D.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; A’Hearn, M.F.; Angrilli, F.; Barucci, M.A.; et al. E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science 2010, 327, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Li, C.; Liu, J.; Wang, W.; Li, H.; Ping, J. The Preliminary Analysis of the 4179 Toutatis Snapshots of the Chang’E-2 Flyby. Icarus 2014, 229, 348–354. [Google Scholar] [CrossRef]
- McKinnon, W.B.; Richardson, D.C.; Marohnic, J.C.; Keane, J.T.; Grundy, W.M.; Hamilton, D.P.; Nesvorný, D.; Umurhan, O.M.; Lauer, T.R.; Singer, K.N.; et al. The Solar Nebula Origin of (486958) Arrokoth, a Primordial Contact Binary in the Kuiper Belt. Science 2020, 367, eaay6620. [Google Scholar] [CrossRef] [PubMed]
- Levison, H.F.; Olkin, C.B.; Noll, K.S.; Marchi, S.; Iii, J.F.B.; Bierhaus, E.; Binzel, R.; Bottke, W.; Britt, D.; Brown, M.; et al. Lucy Mission to the Trojan Asteroids: Science Goals. Planet. Sci. J. 2021, 2, 171. [Google Scholar] [CrossRef]
- Ozaki, N.; Yamamoto, T.; Gonzalez-Franquesa, F.; Gutierrez-Ramon, R.; Pushparaj, N.; Chikazawa, T.; Tos, D.A.D.; Çelik, O.; Marmo, N.; Kawakatsu, Y.; et al. Mission Design of DESTINY+: Toward Active Asteroid (3200) Phaethon and Multiple Small Bodies. Acta Astronaut. 2022, 196, 42–56. [Google Scholar] [CrossRef]
- DellaGiustina, D.N.; Nolan, M.C.; Polit, A.T.; Moreau, M.C.; Golish, D.R.; Simon, A.A.; Adam, C.D.; Antreasian, P.G.; Ballouz, R.-L.; Barnouin, O.S.; et al. OSIRIS-APEX: An OSIRIS-REx Extended Mission to Asteroid Apophis. Planet. Sci. J. 2023, 4, 198. [Google Scholar] [CrossRef]
- Bussey, D.B.J.; Robinson, M.S.; Edwards, K.; Thomas, P.C.; Joseph, J.; Murchie, S.; Veverka, J.; Harch, A.P. 433 Eros Global Basemap from NEAR Shoemaker MSI Images. Icarus 2002, 155, 38–50. [Google Scholar] [CrossRef]
- Veverka, J.; Farquhar, B.; Robinson, M.; Thomas, P.; Murchie, S.; Harch, A.; Antreasian, P.G.; Chesley, S.R.; Miller, J.K.; Owen, W.M.; et al. The Landing of the NEAR-Shoemaker Spacecraft on Asteroid 433 Eros. Nature 2001, 413, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.T.; Raymond, C.A.; Coradini, A.; McSween, H.Y.; Zuber, M.T.; Nathues, A.; De Sanctis, M.C.; Jaumann, R.; Konopliv, A.S.; Preusker, F.; et al. Dawn at Vesta: Testing the Protoplanetary Paradigm. Science 2012, 336, 684–686. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.F.; Michel, P.; Jutzi, M.; Rivkin, A.S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D.C. Asteroid Impact & Deflection Assessment Mission: Kinetic Impactor. Planet. Space Sci. 2016, 121, 27–35. [Google Scholar] [CrossRef]
- Michel, P.; Kueppers, M.; Sierks, H.; Carnelli, I.; Cheng, A.F.; Mellab, K.; Granvik, M.; Kestilä, A.; Kohout, T.; Muinonen, K.; et al. European Component of the AIDA Mission to a Binary Asteroid: Characterization and Interpretation of the Impact of the DART Mission. Adv. Space Res. 2018, 62, 2261–2272. [Google Scholar] [CrossRef]
- Hart, W.; Brown, G.M.; Collins, S.M.; De Soria-Santacruz Pich, M.; Fieseler, P.; Goebel, D.; Marsh, D.; Oh, D.Y.; Snyder, S.; Warner, N.; et al. Overview of the Spacecraft Design for the Psyche Mission Concept. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–20. [Google Scholar]
- Watanabe, S.; Tsuda, Y.; Yoshikawa, M.; Tanaka, S.; Saiki, T.; Nakazawa, S. Hayabusa2 Mission Overview. Space Sci. Rev. 2017, 208, 3–16. [Google Scholar] [CrossRef]
- Fujiwara, A.; Kawaguchi, J.; Yeomans, D.K.; Abe, M.; Mukai, T.; Okada, T.; Saito, J.; Yano, H.; Yoshikawa, M.; Scheeres, D.J.; et al. The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 2006, 312, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Importance of Asteroid Sample Return. Nat. Geosci. 2023, 16, 833. [CrossRef]
- Rosenvinge, T.T.V.; Brandt, J.C.; Farquhar, R.W. The International Cometary Explorer Mission to Comet Giacobini-Zinner. Sci. New Ser. 1986, 232, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Sagdeev, R.Z.; Szabó, F.; Avanesov, G.A.; Cruvellier, P.; Szabó, L.; Szegő, K.; Abergel, A.; Balazs, A.; Barinov, I.V.; Bertaux, J.-L.; et al. Television Observations of Comet Halley from Vega Spacecraft. Nature 1986, 321, 262–266. [Google Scholar] [CrossRef]
- Hirao, K.; Itoh, T. The Planet-A Halley Encounters. Nature 1986, 321, 294–297. [Google Scholar] [CrossRef]
- Reinhard, R. The Giotto Encounter with Comet Halley. Nature 1986, 321, 313–318. [Google Scholar] [CrossRef]
- Grensemann, M.G.; Schwehm, G. Giotto’s Second Encounter: The Mission to Comet P/Grigg-Skjellerup. J. Geophys. Res. 1993, 98, 20907–20910. [Google Scholar] [CrossRef]
- Soderblom, L.A.; Becker, T.L.; Bennett, G.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Isbell, C.; Giese, B.; Hare, T.; et al. Observations of Comet 19P/Borrelly by the Miniature Integrated Camera and Spectrometer Aboard Deep Space 1. Sci. New Ser. 2002, 296, 1087–1091. [Google Scholar] [CrossRef]
- A’Hearn, M.F.; Belton, M.J.S.; Delamere, W.A.; Feaga, L.M.; Hampton, D.; Kissel, J.; Klaasen, K.P.; McFadden, L.A.; Meech, K.J.; Melosh, H.J.; et al. EPOXI at Comet Hartley 2. Science 2011, 332, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Veverka, J.; Klaasen, K.; A’Hearn, M.; Belton, M.; Brownlee, D.; Chesley, S.; Clark, B.; Economou, T.; Farquhar, R.; Green, S.F.; et al. Return to Comet Tempel 1: Overview of Stardust-NExT Results. Icarus 2013, 222, 424–435. [Google Scholar] [CrossRef]
- A’Hearn, M.F.; Belton, M.J.S.; Delamere, W.A.; Kissel, J.; Klaasen, K.P.; McFadden, L.A.; Meech, K.J.; Melosh, H.J.; Schultz, P.H.; Sunshine, J.M.; et al. Deep Impact: Excavating Comet Tempel 1. Science 2005, 310, 258–264. [Google Scholar] [CrossRef]
- Kofman, W.; Herique, A.; Goutail, J.-P.; Hagfors, T.; Williams, I.P.; Nielsen, E.; Barriot, J.-P.; Barbin, Y.; Elachi, C.; Edenhofer, P.; et al. The Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT): A Short Description of the Instrument and of the Commissioning Stages. Space Sci. Rev. 2007, 128, 413–432. [Google Scholar] [CrossRef]
- Snodgrass, C.; Jones, G.H.; Boehnhardt, H.; Gibbings, A.; Homeister, M.; Andre, N.; Beck, P.; Bentley, M.S.; Bertini, I.; Bowles, N.; et al. The Castalia Mission to Main Belt Comet 133P/Elst-Pizarro. Adv. Space Res. 2018, 62, 1947–1976. [Google Scholar] [CrossRef]
- Hicks, L.J.; MacArthur, J.L.; Bridges, J.C.; Price, M.C.; Wickham-Eade, J.E.; Burchell, M.J.; Hansford, G.M.; Butterworth, A.L.; Gurman, S.J.; Baker, S.H. Magnetite in Comet Wild 2: Evidence for Parent Body Aqueous Alteration. Meteorit. Planet. Sci. 2017, 52, 2075–2096. [Google Scholar] [CrossRef]
- Cheng, A.F.; Agrusa, H.F.; Barbee, B.W.; Meyer, A.J.; Farnham, T.L.; Raducan, S.D.; Richardson, D.C.; Dotto, E.; Zinzi, A.; Della Corte, V.; et al. Momentum Transfer from the DART Mission Kinetic Impact on Asteroid Dimorphos. Nature 2023, 616, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Michel, P.; Küppers, M.; Bagatin, A.C.; Carry, B.; Charnoz, S.; Leon, J.D.; Fitzsimmons, A.; Gordo, P.; Green, S.F.; Hérique, A.; et al. The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos. Planet. Sci. J. 2022, 3, 160. [Google Scholar] [CrossRef]
- Goldberg, H.R.; Karatekin, Ö.; Ritter, B.; Herique, A.; Tortora, P.; Risorgimento, V.; Prioroc, C.; Gutierrez, B.G.; Martino, P.; Carnelli, I.; et al. The Juventas CubeSat in Support of ESA’s Hera Mission to the Asteroid Didymos; Utah State University: Logan, UT, USA, 2019. [Google Scholar]
- Herique, A.; Plettemeier, D.; Goldberg, H.; Kofman, W.; JuRa Team. JuRa: The Juventas Radar on Hera to Fathom Didymoon. In Proceedings of the 14th Europlanet Science Congress 2020, Virtual, 21 September–9 October 2020. [Google Scholar]
- Herique, A.; Plettemeier, D.; Lange, C.; Grundmann, J.T.; Ciarletti, V.; Ho, T.-M.; Kofman, W.; Agnus, B.; Du, J.; Fa, W.; et al. A Radar Package for Asteroid Subsurface Investigations: Implications of Implementing and Integration into the MASCOT Nanoscale Landing Platform from Science Requirements to Baseline Design. Acta Astronaut. 2019, 156, 317–329. [Google Scholar] [CrossRef]
- Hera’s Mini-Radar Will Probe Asteroid’s Heart. Available online: https://www.esa.int/Space_Safety/Hera/Hera_s_mini-radar_will_probe_asteroid_s_heart (accessed on 12 March 2024).
- Glassmeier, K.-H.; Boehnhardt, H.; Koschny, D.; Kührt, E.; Richter, I. The Rosetta Mission: Flying Towards the Origin of the Solar System. Space Sci. Rev. 2007, 128, 1–21. [Google Scholar] [CrossRef]
- Barbin’, Y.; Kofmar, W.; Nielsen’, E.; Hagfor, T.; Seu, R.; Picardi, G.; Svedhem’, H. The CONSERT instrument for the ROSETTA mission. Adv. Space Res. 1999, 24, 1115–1126. [Google Scholar] [CrossRef]
- Kofman, W.; Herique, A.; Barbin, Y.; Barriot, J.-P.; Ciarletti, V.; Clifford, S.; Edenhofer, P.; Elachi, C.; Eyraud, C.; Goutail, J.-P.; et al. Properties of the 67P/Churyumov-Gerasimenko Interior Revealed by CONSERT Radar. Science 2015, 349, aab0639. [Google Scholar] [CrossRef] [PubMed]
- Herique, A.; Kofman, W.; Beck, P.; Bonal, L.; Buttarazzi, I.; Heggy, E.; Lasue, J.; Levasseur-Regourd, A.C.; Quirico, E.; Zine, S. Cosmochemical Implications of CONSERT Permittivity Characterization of 67P/CG. Mon. Not. R. Astron. Soc. 2016, 462, S516–S532. [Google Scholar] [CrossRef]
- Kofman, W.; Herique, A.; Ciarletti, V.; Lasue, J.; Levasseur-Regourd, A.; Zine, S.; Plettemeier, D. The Interior of 67P/C-G Comet as Seen by CONSERT Bistatic Radar on ROSETTA, Key Results and Implications. In Proceedings of the European Planetary Science Congress 2017, Riga, Latvia, 17–22 September 2017; Volume 11, p. EPSC2017-203-1. [Google Scholar]
- Hsieh, H.H.; Jewitt, D. A Population of Comets in the Main Asteroid Belt. Science 2006, 312, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Croci, R.; Seu, R.; Flamini, E.; Russo, E. The SHAllow RADar (SHARAD) Onboard the NASA MRO Mission. Proc. IEEE 2011, 99, 794–807. [Google Scholar] [CrossRef]
- Michel, P.; Cheng, A.; Küppers, M.; Pravec, P.; Blum, J.; Delbo, M.; Green, S.F.; Rosenblatt, P.; Tsiganis, K.; Vincent, J.B.; et al. Science Case for the Asteroid Impact Mission (AIM): A Component of the Asteroid Impact & Deflection Assessment (AIDA) Mission. Adv. Space Res. 2016, 57, 2529–2547. [Google Scholar] [CrossRef]
- Sharkey, B.N.L.; Reddy, V.; Malhotra, R.; Thirouin, A.; Kuhn, O.; Conrad, A.; Rothberg, B.; Sanchez, J.A.; Thompson, D.; Veillet, C. Lunar-like Silicate Material Forms the Earth Quasi-Satellite (469219) 2016 HO3 Kamo‘oalewa. Commun. Earth Environ. 2021, 2, 1–7. [Google Scholar] [CrossRef]
- Hu, S.; Li, B.; Jiang, H.; Bao, G.; Ji, J. Peculiar Orbital Characteristics of Earth Quasi-Satellite 469219 Kamo‘oalewa: Implications for the Yarkovsky Detection and Orbital Uncertainty Propagation. Astron. J. 2023, 166, 178. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Zheng, S.; He, Y.; Dai, S.; Liu, P.; Dang, H.; Tan, X. Design and Ground Experiment of Asteroid Internal Structure Detection Radar (AISDR) Onboard Tianwen-2 Mission. In Proceedings of the IET International Radar Conference (IRC 2023), Chongqing, China, 3–5 December 2023; pp. 3989–3993. [Google Scholar] [CrossRef]
Phase | Space Agency | Spacecraft | Start Time | Target | With (√)/Without (×) GPR |
---|---|---|---|---|---|
Fly-by | NASA | Galileo | 1991 | 951 Gaspra | × |
1993 | 243 Ida | × | |||
NEAR-Shoemaker | 1997 | 253 Mathilde | × | ||
Deep Space 1 | 1999 | 9969 Braille | × | ||
Cassini–Huygens | 2000 | 2685 Masursky | × | ||
Stardust | 2002 | 5535 Annefrank | × | ||
ESA | Rosetta | 2008 | 2867 Steins | × | |
2010 | 21 Lutetia | × | |||
CNSA | Chang’e 2 | 2012 | 4179 Toutatis | × | |
NASA | New Horizons | 2019 | 486958 Arrokoth | × | |
Lucy | 2023–2033 | 3548 Eurybates 3548 Queta 15094 Polymele 11351 Leucus 21900 Orus 617 Patroclus and Menoetius 52246 Donaldjohanson | × | ||
JAXA | Destiny+ | 2028 | 3200 Phaethon 2005 UD | × | |
NASA | OSIRIS-APEX | 2029 | 99942 Apophis | × | |
Surrounding and landing | NASA | NEAR-Shoemaker | 1998 | 433 Eros | × |
Dawn | 2011 | 4 Vesta | × | ||
NASA/ESA | AIDA (DART and Hera) | (2021 and 2024) | 65803 Didymos Dimorphos | √ | |
NASA | Psyche | 2029 | 16 Psyche | × | |
Sample return | JAXA | Hayabusa | 2005 | 25143 itokawa | × |
Hayabusa 2 | 2018 | 162173 Ryugu | × | ||
NASA | OSIRIS-REx | 2018 | 101955 Bennu | × | |
CNSA | Tianwen-2 | 2025 | 2016 HO3 (469219 Kamo’oalewa) | √ |
Phase | Space Agency | Spacecraft | Start Time | Target | With (√)/Without (×) GPR |
---|---|---|---|---|---|
Fly-by | NASA | International Cometary Explorer | 1985 | 21P/Giacobini-Zinner | × |
USSR | VeGa 1 | 1986 | 1P/Halley | × | |
VeGa 2 | |||||
JXSA | Suisei | ||||
Sakigake | |||||
ESA | Giotto | 1992 | 26P/Grigg–Skjellerup | × | |
NASA | Deep Space 1 | 2001 | 19P/Borrelly | × | |
Deep Impact | 2010 | 103P/Hartley 2 | × | ||
Stardust | 2011 | 9P/Tempel 1 | × | ||
Surrounding and landing | NASA | Deep Impact | 2005 | 9P/Tempel 1 | × |
ESA | Rosetta | 2016 | 67P/Churyumov–Gerasimenko | √ | |
ESA | Castalia | 2028 | 133P/Elst-Pizarro | √ | |
CNSA | Tianwen-2 | 2032 | 311P/PANSTARRS | √ | |
Sample Return | NASA | Stardust | 2004 | 81P/Wild | × |
Mission | Hera | Rosetta | Castalia | Tianwen-2 | ||
---|---|---|---|---|---|---|
Start time | 2024 | 2016 | 2035 | 2026 and 2033 | ||
Target | 65803 Didymos Dimorphos (Asteroid) | 67P/Churyumov–Gerasimenko (Comet) | 133P/Elst–Pizarro (Comet) | 2016 HO3 (469219 Ka-mo’oalewa) (Asteroid) 311P/PANSTARRS (Comet) | ||
Radar | JuRa | CONSERT | SOURCE | SSR | ACSR | |
Antenna | Dipole | Dipole | Dipole | Vivaldi | Dipole | Vivaldi |
Center frequency (MHz) | 60 | 90 | 20 | 300–800 (Extended mode: 3 GHz) | 150 | 900 |
Bandwidth (MHz) | 20 | 10 | 10 | -- | 40 | 1200 |
Maximum exploration depth (m) | 100 | 100 | 1500 | 50 | 50 (Asteroid) 300 (Comet) | 5 (Asteroid) 30 (Comet) |
Resolution (m) | 10 | 20 | 7 | 1 | 5 | 0.25 |
Polarization | Tx: 1 Circular Rx: OC and SC | Tx: 1 Circular Rx: OC and SC | -- | Tx: 1 Circular Rx: OC and SC | Tx: 1 Circular Rx: OC and SC | -- |
Transmit power (W) | 10 | Orbiter: 4 Lander: 10 | 10 | 20 | 10 | 10 |
Signal modulation | BPSK | BPSK | Chirp | Stepped frequency | Stepped frequency | Stepped frequency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, W.; Su, Y.; Li, J.; Dai, S.; Ding, C.; Liu, Y. Applications of Ground-Penetrating Radar in Asteroid and Comet Exploration. Remote Sens. 2024, 16, 2188. https://doi.org/10.3390/rs16122188
Guan W, Su Y, Li J, Dai S, Ding C, Liu Y. Applications of Ground-Penetrating Radar in Asteroid and Comet Exploration. Remote Sensing. 2024; 16(12):2188. https://doi.org/10.3390/rs16122188
Chicago/Turabian StyleGuan, Wei, Yan Su, Jiawei Li, Shun Dai, Chunyu Ding, and Yuhang Liu. 2024. "Applications of Ground-Penetrating Radar in Asteroid and Comet Exploration" Remote Sensing 16, no. 12: 2188. https://doi.org/10.3390/rs16122188
APA StyleGuan, W., Su, Y., Li, J., Dai, S., Ding, C., & Liu, Y. (2024). Applications of Ground-Penetrating Radar in Asteroid and Comet Exploration. Remote Sensing, 16(12), 2188. https://doi.org/10.3390/rs16122188