Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Data
2.2.2. Sentinel-2 Image Time Series
2.3. Methodology
2.3.1. Classification Scheme
2.3.2. Crop Type Mapping
2.3.3. Accuracy Assessment
3. Results
3.1. Mapping Accuracies
3.2. Cropland Changes
4. Discussion
4.1. Effectiveness of Fine-Scale Image Time Series in Tropical Crop Type Mapping
4.2. Impact of COVID-19 and Other Factors on Crop Choice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Chief Declares End to COVID-19 as a Global Health Emergency. Available online: https://news.un.org/en/story/2023/05/1136367 (accessed on 1 October 2023).
- Stephens, E.C.; Martin, G.; van Wijk, M.; Timsina, J.; Snow, V. Editorial: Impacts of COVID-19 on agricultural and food systems worldwide and on progress to the sustainable development goals. Agric. Syst. 2020, 183, 102873. [Google Scholar] [CrossRef]
- Torero, M. Without food, there can be no exit from the pandemic. Countries must join forces to avert a global food crisis from COVID-19. Nature 2020, 580, 588–589. [Google Scholar] [CrossRef]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Boughton, D.; Goeb, J.; Lambrecht, I.; Headey, D.; Takeshima, H.; Mahrt, K.; Masias, I.; Goudet, S.; Ragasa, C.; Maredia, M.K.; et al. Impacts of COVID-19 on agricultural production and food systems in late transforming Southeast Asia: The case of Myanmar. Agric. Syst. 2021, 188, 103026. [Google Scholar] [CrossRef] [PubMed]
- Middendorf, B.J.; Faye, A.; Middendorf, G.; Stewart, Z.P.; Jha, P.K.; Prasad, P.V.V. Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agric. Syst. 2021, 190, 103108. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Scaling up Climate Ambition on Land Use and Agriculture through Nationally Determined Contributions and National Adaptation Plans (SCALA). Available online: https://www.fao.org/in-action/scala/countries/thailand/en (accessed on 3 March 2024).
- Thai Ministry of Agriculture and Cooperatives. Thailand Is Now the World’s 13th Largest Exporter of Agricultural Products; Minster. Available online: https://www.nationthailand.com/thailand/economy/400241878/ (accessed on 1 October 2023).
- van Welzen, P.C.; Madern, A.; Raes, N.; Parnell, J.A.N.; Simpson, D.A.; Byrne, C.; Curtis, T.; Macklin, J.; Trias-Blasi, A.; Prajaksood, A.; et al. The current and future status of floristic provinces in Thailand. In Land Use, Climate Change and Biodiversity Modeling: Perspectives and Applications; IGI Global: Hershey, PA, USA, 2011; pp. 219–247. [Google Scholar]
- China Importing $2.2 Billion Durian from Thailand in 2020. Available online: https://www.globaltimes.cn/page/202102/1216754.shtml#:~:text=China%20imported%20575%2C000%20tons%20of,from%20Thailand%2C%20the%20ministry%20said (accessed on 1 October 2023).
- Tansuchat, R.; Suriyankietkaew, S.; Petison, P.; Punjaisri, K.; Nimsai, S. Impacts of COVID-19 on Sustainable Agriculture Value Chain Development in Thailand and ASEAN. Sustainability 2022, 14, 12985. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Sittitoon, N.; La-up, A.; Pakvilai, N.; Chittrakul, J.; Sirikul, W.; Kitro, A.; Hongsibsong, S. Changes in agricultural context and mental health of farmers in different regions of Thailand during the fifth wave of the COVID-19 pandemic. BMC Public Health 2022, 22, 2050. [Google Scholar] [CrossRef]
- Pimoljinda, T.; Hongwiset, S. Food Safety, Consumer Behaviour, and Government Policy after the COVID-19 Pandemic in Thailand: A Review. In Proceedings of the International Conference on Politics, Social, and Humanities Sciences, Purwokerto, Indonesia, 12–13 October 2022; KnE Social Sciences: Dubai, United Arabic Emirates, 2023; pp. 249–259. [Google Scholar]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Wei, Y.; Tong, X.; Chen, G.; Liu, D.; Han, Z. Remote Detection of Large-Area Crop Types: The Role of Plant Phenology and Topography. Agriculture 2019, 9, 150. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, H.; Shen, Y.; Lou, B.; Jiang, C.; Li, T.; Hussain, S.B.; Shen, G. Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. 2020, 13, 414–427. [Google Scholar] [CrossRef]
- Chen, G.; Thill, J.-C.; Anantsuksomsri, S.; Tontisirin, N.; Tao, R. Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series. ISPRS J. Photogramm. Remote Sens. 2018, 144, 94–104. [Google Scholar] [CrossRef]
- United Nations. Thai Agricultural Sector: From Problems to Solutions. Available online: https://thailand.un.org/en/103307-thai-agricultural-sector-problems-solutions (accessed on 1 October 2023).
- Talema, T.; Hailu, B.T. Mapping rice crop using sentinels (1 SAR and 2 MSI) images in tropical area: A case study in Fogera wereda, Ethiopia. Remote Sens. Appl. Soc. Environ. 2020, 18, 100290. [Google Scholar] [CrossRef]
- Ibrahim, E.S.; Rufin, P.; Nill, L.; Kamali, B.; Nendel, C.; Hostert, P. Mapping crop types and cropping systems in Nigeria with sentinel-2 imagery. Remote Sens. 2021, 13, 3523. [Google Scholar] [CrossRef]
- Maskell, G.; Chemura, A.; Nguyen, H.; Gornott, C.; Mondal, P. Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam. Remote Sens. Environ. 2021, 266, 112709. [Google Scholar] [CrossRef]
- Yin, L.; Ghosh, R.; Lin, C.; Hale, D.; Weigl, C.; Obarowski, J.; Zhou, J.; Till, J.; Jia, X.; You, N.; et al. Mapping smallholder cashew plantations to inform sustainable tree crop expansion in Benin. Remote Sens. Environ. 2023, 295, 113695. [Google Scholar] [CrossRef]
- Royal Thai Government. EEC Development Plan. Available online: https://www.eeco.or.th/en/government-initiative (accessed on 1 October 2023).
- Thai National Statistical Office. Demography Population and Housing Branch. Available online: http://statbbi.nso.go.th/staticreport/page/sector/en/01.aspx (accessed on 1 October 2023).
- Asian Development Bank. Climate Risk Country Profile: Thailand. Available online: https://www.adb.org/sites/default/files/publication/722251/climate-risk-country-profile-thailand.pdf (accessed on 1 October 2023).
- Thai Office of Agricultural Economics. Agricultural Statistics of Thailand; Thai Office of Agricultural Economics: Bangkok, Thailand, 2022; 224p. [Google Scholar]
- Baker, C.; Baker, C.J.; Phongpaichit, P. A History of Thailand; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Thai Ministry of Commerce. Foreign Business Act Amendment. Available online: http://thailawforum.com/foreignbusinessactamendmentstranslation.html (accessed on 1 October 2023).
- Tontisirin, N.; Anantsuksomsri, S. Economic development policies and land use changes in Thailand: From the Eastern Seaboard to the Eastern Economic Corridor. Sustainability 2021, 13, 6153. [Google Scholar] [CrossRef]
- Sellers, P.J.; Tucker, C.J.; Collatz, G.J.; Los, S.O.; Justice, C.O.; Dazlich, D.A.; Randall, D.A. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef]
- Wilson, B.T.; Knight, J.F.; McRoberts, R.E. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 29–46. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, Z.; Xian, G.; Li, C. A novel regression method for harmonic analysis of time series. ISPRS J. Photogramm. Remote Sens. 2022, 185, 48–61. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hultquist, C.; Chen, G.; Zhao, K. A Comparison of Gaussian Process Regression, Random Forests and Support Vector Regression for Burn Severity Assessment in Diseased Forests. Remote Sens. Lett. 2014, 5, 723–732. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; and Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote. Sens. 1986, 52, 397–399. [Google Scholar]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of South Asia using MODIS multitemporal data. J. Appl. Remote Sens. 2011, 5, 053547. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Panjala, P.; Teluguntla, P.; Yamano, T.; Mohammed, I. Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security. GIScience Remote Sens. 2022, 59, 1048–1077. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Kamal, M.; Schulthess, U.; Krupnik, T.J. Identification of mung bean in a smallholder farming setting of coastal South Asia using manned aircraft photography and sentinel-2 images. Remote Sens. 2020, 12, 3688. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Martínez-Eixarch, M.; Alcaraz, C. Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Res. 2022, 281, 108507. [Google Scholar] [CrossRef]
- Gumma, M.K.; Tummala, K.; Dixit, S.; Collivignarelli, F.; Holecz, F.; Kolli, R.N.; Whitbread, A.M. Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto Int. 2022, 37, 1833–1849. [Google Scholar] [CrossRef]
- Khan, H.R.; Gillani, Z.; Jamal, M.H.; Athar, A.; Chaudhry, M.T.; Chao, H.; He, Y.; Chen, M. Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series. Sensors 2023, 23, 1779. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Feng, A.; Wang, G.; Zhang, Q.; Dai, W.; Wei, X.; Hu, Y.; Amankwah, S.O.Y.; Zhou, F.; Liu, Y. Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple Deep Learning Networks. Remote Sens. 2023, 15, 3417. [Google Scholar] [CrossRef]
- NASA. Drought Hits Thailand. Available online: https://earthobservatory.nasa.gov/images/146293/drought-hits-thailand (accessed on 1 October 2023).
- Dutta, D.; Chen, G.; Chen, C.; Gagné, S.A.; Li, C.; Rogers, C.; Matthews, C. Detecting Plant Invasion in Urban Parks with Aerial Image Time Series and Residual Neural Network. Remote Sens. 2020, 12, 3493. [Google Scholar] [CrossRef]
- Khemanitthathai, S. Situation on Migrant Workers and Border Crossing during the COVID-19 Pandemic. Available online: https://mwgthailand.org/en/publication (accessed on 1 October 2023).
- Musikawong, S.; Jampaklay, A.; Khamkhom, N.; Tadee, R.; Kerdmongkol, A.; Buckles, L.; Khachasin, S.; Engblom, A. Working and Employment Conditions in the Agriculture Sector in Thailand: A Survey of Migrants Working on Thai Sugarcane, Rubber, Oil Palm and Maize Farms. p. 126. Available online: https://www.ilo.org/wcmsp5/groups/public/---asia/---ro-bangkok/documents/publication/wcms_844317.pdf (accessed on 1 October 2023).
- WHO. Fact or Fiction. Available online: https://www.who.int/southeastasia/outbreaks-and-emergencies/covid-19/What-can-we-do-to-keep-safe/fact-or-fiction (accessed on 1 October 2023).
- Yang, C. Cross-border expansion of digital platforms and transformation of the trade and distribution networks of imported fresh fruits from Southeast Asia to China. Glob. Netw. 2022, 22, 716–734. [Google Scholar] [CrossRef]
- Global Times. Thai Farmers Gear Up to Satisfy China’s Growing Appetite for “King of Fruits”. Available online: https://www.globaltimes.cn/page/202205/1265937.shtml?id=11 (accessed on 1 October 2023).
- Federal Reserve Bank of St. Louis. Federal Reserve Economic Data. Available online: https://fredhelp.stlouisfed.org (accessed on 1 October 2023).
- Bloomberg. Singapore Durian Lovers Rejoice as Prices Plunge on Surplus. Available online: https://www.bloomberg.com/news/articles/2023-06-22/singapore-s-durian-lovers-rejoice-as-prices-tumble-on-surplus (accessed on 1 October 2023).
- United Nations Office for Disaster Risk Reduction (UNDRR). Disaster Risk Reduction in Thailand, Status Report. 2020, p. 39. Available online: https://www.undrr.org/media/48642/download?startDownload=true (accessed on 1 October 2023).
- Ruensuk, N.; Rossopa, B.; Channu, C.; Paothong, K.; Prayoonsuk, N.; Rakchum, P.; Malumpong, C. Improving water use efficiency and productivity in rice crops by applying alternate wetting and drying with pregerminated broadcasting in farmers’ fields. Agric. Nat. Resour. 2021, 55, 119–130. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Hammelman, C.; Anantsuksomsri, S.; Tontisirin, N.; Todd, A.R.; Hicks, W.W.; Robinson, H.M.; Calloway, M.G.; Bell, G.M.; Kinsey, J.E., III. Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand. Remote Sens. 2024, 16, 1035. https://doi.org/10.3390/rs16061035
Chen G, Hammelman C, Anantsuksomsri S, Tontisirin N, Todd AR, Hicks WW, Robinson HM, Calloway MG, Bell GM, Kinsey JE III. Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand. Remote Sensing. 2024; 16(6):1035. https://doi.org/10.3390/rs16061035
Chicago/Turabian StyleChen, Gang, Colleen Hammelman, Sutee Anantsuksomsri, Nij Tontisirin, Amelia R. Todd, William W. Hicks, Harris M. Robinson, Miles G. Calloway, Grace M. Bell, and John E. Kinsey, III. 2024. "Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand" Remote Sensing 16, no. 6: 1035. https://doi.org/10.3390/rs16061035
APA StyleChen, G., Hammelman, C., Anantsuksomsri, S., Tontisirin, N., Todd, A. R., Hicks, W. W., Robinson, H. M., Calloway, M. G., Bell, G. M., & Kinsey, J. E., III. (2024). Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand. Remote Sensing, 16(6), 1035. https://doi.org/10.3390/rs16061035