Combining Cylindrical Voxel and Mask R-CNN for Automatic Detection of Water Leakages in Shield Tunnel Point Clouds
Abstract
:1. Introduction
- (1)
- A data organization method of cylindrical-voxel structure is proposed to convert the point cloud from disordered to ordered and realize the projection conversion of the 3D point cloud to 2D intensity images. Compared with the traditional cylindrical projection method, this method can generate higher quality 2D intensity images, which is not only applicable to mobile laser point cloud data but also to terrestrial laser point cloud data.
- (2)
- Based on the 2D intensity images generated by the cylindrical voxel projection and the Mask R-CNN algorithm, leakage detection is realized, and the Mask R-CNN demonstrates higher accuracy and efficiency than the semantic segmentation algorithms (U-net and DeepLabV3+) in the leakage segmentation task.
- (3)
- The representation of water leakage in 3D space is achieved based on the cylindrical-voxel structure of shield tunnel point clouds, which could help the inspectors locate the water leakage area quickly.
2. Materials
2.1. Experimental Data
2.2. Hardware Configuration
3. Methods
3.1. Converting 3D Point Clouds to 2D Intensity Images
3.1.1. Extracting the 3D Axial Points and Section Points of Shield Tunnel
3.1.2. Cylindrical Voxelization
3.1.3. Generating the 2D Intensity Image
3.2. Mask R-CNN Architecture
3.2.1. Backbone Structure
3.2.2. Generation of Water Leakage Proposals
3.2.3. Head Structure
3.3. Accuracy Evaluation Metrics
4. Results and Discussion
4.1. Data Preprocessing
4.2. Cylindrical Voxel-Based Transformation of 3D Point Clouds into 2D Intensity Images
4.2.1. Two-Dimensional Intensity Images Generated by a Cylindrical Voxel
4.2.2. Comparison with the Cylindrical Projection Method
4.3. Leakage Segmentation and Localization with Cylindrical Voxel Projection and Mask R-CNN
4.3.1. Automatic Detection of Water Leakage
4.3.2. Calculation of Leakage Area and Position
4.3.3. Comparison with Water Leakage Detection Methods with Cylindrical Projection and Mask R-CNN
4.3.4. Comparison with Water Leakage Detection Methods with Cylindrical Voxel Projection and Semantic Segmentation Algorithms
4.4. Three-Dimensional Visualization of Water Leakage Segmentation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China Urban Rail Transit Association. Urban Rail Transit 2022 Annual Statistical and Analytical Report. Urban Rail Transit 2023, 4, 13–15. [Google Scholar] [CrossRef]
- Ko, B.; Son, Y.-K.; Shin, D.; Han, C.-S. Development of an inspection system for cracks on the lining of concrete tunnels. In Proceedings of the 20th International Symposium on Automation and Robotics in Construction, Eindhoven, The Netherlands, 21–24 September 2003; pp. 457–463. [Google Scholar]
- Shi, Z.; Chen, X. Leakage Water Position Recognition of Railway Tunnel Wall Based on Terrestrial Laser-Scanning Tech-nology. J. Shanghai Univ. Eng. Sci. 2015, 29, 103–109. [Google Scholar]
- Hu, X.; Bai, N.; Li, H. Analysis on tunnel accident on line 1 of Saint Petersburg Metro. Tunnel Constr 2008, 28, 418–422. [Google Scholar]
- Shao, H.; Huang, H.; Zhang, D.; Wang, R. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay. Chin. J. Geotech. Eng. 2016, 38, 1036–1043. [Google Scholar]
- Zhang, Y.; Zhu, W.; Zhao, C.; Han, B. Moniting and inversion of Foshan metro collapse with multi-temporal Insar and field investigation. J. Eng. Geol. 2021, 29, 1167–1177. [Google Scholar]
- Yuan, Y.; Jiang, X.; Liu, X. Predictive maintenance of shield tunnels. Tunn. Undergr. Space Technol. 2013, 38, 69–86. [Google Scholar] [CrossRef]
- Man, K.; Liu, R.; Liu, X.; Song, Z.; Liu, Z.; Cao, Z.; Wu, L. Water leakage and crack identification in tunnels based on transfer-learning and convolutional neural networks. Water 2022, 14, 1462. [Google Scholar] [CrossRef]
- Attard, L.; Debono, C.J.; Valentino, G.; Di Castro, M. Tunnel inspection using photogrammetric techniques and image processing: A re-view. ISPRS J. Photogramm. Remote Sens. 2018, 144, 180–188. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Y.; Xue, Y.; Wang, F. Inspection equipment study for subway tunnel defects by grey-scale image processing. Adv. Eng. Inform. 2017, 32, 188–201. [Google Scholar] [CrossRef]
- Ai, Q.; Yuan, Y.; Bi, X. Acquiring sectional profile of metro tunnels using charge-coupled device cameras. Struct. Infrastruct. Eng. 2016, 12, 1065–1075. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Qi, D.; Liu, Y. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors 2014, 14, 19307–19328. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.G.; Olsen, M.J.; Parrish, C.E.; Wilson, N. A review of LiDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Sun, H.; Zhong, R.; Du, L. Method for Tunnel Displacements Calculation Based on Mobile Tunnel Monitoring System. Sensors 2021, 21, 4407. [Google Scholar] [CrossRef]
- He, G.Z.; Yang, J. Deformation monitoring for subway tunnels based on TLS. Adv. Mater. Res. 2014, 864, 2744–2749. [Google Scholar] [CrossRef]
- Cui, H.; Ren, X.; Mao, Q.; Hu, Q.; Wang, W. Shield subway tunnel deformation detection based on mobile laser scanning. Autom. Constr. 2019, 106, 102889. [Google Scholar] [CrossRef]
- Cao, X.G.; Yang, J.L.; Meng, X.L.; Zhang, W.C. Subway tunnel cross-section surveying based on ground 3D laser scanning data. Adv. Mater. Res. 2015, 1079, 296–299. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, D.M.; Huang, H.W. Deep learning–based image instance segmentation for moisture marks of shield tunnel lining. Tunn. Undergr. Space Technol. 2020, 95, 103156. [Google Scholar] [CrossRef]
- Huang, H.; Cheng, W.; Zhou, M.; Chen, J.; Zhao, S. Towards automated 3D inspection of water leakages in shield tunnel linings using mobile laser scanning data. Sensors 2020, 20, 6669. [Google Scholar] [CrossRef]
- Yi, C.; Lu, D.; Xie, Q.; Liu, S.; Li, H.; Wei, M.; Wang, J. Hierarchical tunnel modeling from 3D raw LiDAR point cloud. Comput. Des. 2019, 114, 143–154. [Google Scholar] [CrossRef]
- Duan, D.Y.; Qiu, W.G.; Cheng, Y.J.; Zheng, Y.C.; Lu, F. Reconstruction of shield tunnel lining using point cloud. Autom. Constr. 2021, 130, 103860. [Google Scholar] [CrossRef]
- Tan, K.; Cheng, X.; Ju, Q.; Wu, S. Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1711–1715. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, G.; Röshoff, K. Detection of water leakage using laser images from 3D laser scanning data. In Proceedings of the 10th IAEG Congress, Nottingham, UK, 6–10 September 2006; Volume 87. [Google Scholar]
- Gonçalves, J.A.; Mendes, R.; Araújo, E.; Oliveira, A.; Boavida, J. Planar projection of mobile laser scanning data in tunnels. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 109–113. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote. Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Wu, C.; Huang, H. Laser scanning detection method and application of water leakage in subway tunnels. J. Nat. Hazards 2018, 27, 59–66. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, S.; Zhang, S.; Li, G.; Wang, X. A point cloud based leakage detection method for tunnels. Surv. Mapp. Bull. 2021, S2, 140–144. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Protopapadakis, E.; Doulamis, N. Image based approaches for tunnels’ defects recognition via robotic inspectors. In Proceedings of the Advances in Visual Computing: 11th International Symposium, ISVC 2015, Las Vegas, NV, USA, 14–16 December 2015; Proceedings, Part I 11. Springer International Publishing: Cham, Switzerland, 2015; pp. 706–716. [Google Scholar]
- Huang, H.-W.; Li, Q.-T.; Zhang, D.-M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn. Undergr. Space Technol. 2018, 77, 166–176. [Google Scholar] [CrossRef]
- Xiong, L.; Zhang, D.; Zhang, Y. Water leakage image recognition of shield tunnel via learning deep feature representation. J. Vis. Commun. Image Represent. 2020, 71, 102708. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, X.; Tan, K.; Wang, L.; Yang, L. Automatic detection of shield tunnel leakages based on terrestrial mobile LiDAR intensity imag-es using deep learning. IEEE Acces 2021, 9, 55300–55310. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Xue, Y.; Jia, F.; Cai, X.; Shadabfar, M.; Huang, H. An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels. Comput. Civ. Infrastruct. Eng. 2022, 37, 386–402. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Zhang, Z.; Li, Y.; Zhong, R.; Li, J.; Chen, S. A multiscale deep feature for the instance segmentation of water leakages in tunnel using MLS point cloud intensity images. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Qiu, W.; Cheng, Y.J. High-resolution DEM generation of railway tunnel surface using terrestrial laser scanning data for clear-ance inspection. J. Comput. Civ. Eng. 2017, 31, 04016045. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Z.; Yao, L.; Zhong, R.; Du, L.; Wu, H. Tunnel monitoring and measuring system using mobile laser scanning: Design and deployment. Remote Sens. 2020, 12, 730. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th Euro-pean Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13. Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Cao, Z.; Chen, D.; Shi, Y.; Zhang, Z.; Jin, F.; Yun, T.; Xu, S.; Kang, Z.; Zhang, L. A flexible architecture for extracting metro tunnel cross sections from terrestrial laser scanning point clouds. Remote. Sens. 2019, 11, 297. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, L.; Tuo, L.; Wang, B.; Chen, J. Continuous extraction of subway tunnel cross sections based on terrestrial point clouds. Remote. Sens. 2014, 6, 857–879. [Google Scholar] [CrossRef]
- Hafiz, A.M.; Bhat, G.M. A survey on instance segmentation: State of the art. Int. J. Multimed. Inf. Retr. 2020, 9, 171–189. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang, X. Mask scoring r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6409–6418. [Google Scholar]
- Wu, Y.; Hu, M.; Xu, G.; Zhou, X.; Li, Z. Detecting leakage water of shield tunnel segments based on mask R-CNN. In Proceedings of the 2019 IEEE International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH), Xiamen, China, 20–22 December 2019; pp. 25–28. [Google Scholar]
- Xue, Y.; Cai, X.; Shadabfar, M.; Shao, H.; Zhang, S. Deep learning-based automatic recognition of water leakage area in shield tunnel lining. Tunn. Undergr. Space Technol. 2020, 104, 103524. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Comput-er Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28, pp. 91–99. [Google Scholar]
- Puente, I.; Akinci, B.; González-Jorge, H.; Díaz-Vilariño, L.; Arias, P. A semi-automated method for extracting vertical clearance and cross sections in tunnels using mobile LiDAR data. Tunn. Undergr. Space Technol. 2016, 59, 48–54. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, R.; Chen, W.; Sun, H.; Ren, Y.; Lei, N. Study of Tunnel Surface Parameterization of 3-D Laser Point Cloud Based on Harmonic Map. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 1623–1627. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
Params | First Group | Second Group | Third Group | Fourth Group |
---|---|---|---|---|
0.12° | 0.24° | 0.6° | 1.2° | |
d1 | 0.006 m | 0.015 m | 0.05 m | 0.08 m |
Name of Dataset | Acquisition Method | Projection Method | Cropped or Not | Number of Images |
---|---|---|---|---|
Data_1 | MLS | cylindrical voxel projection | No | 353 |
Data_2 | MLS | cylindrical projection | No | 353 |
Data_3 | TLS | cylindrical voxel projection | No | 362 |
Data_4 | TLS | cylindrical projection | No | 362 |
Data_5 | TLS + MLS | cylindrical voxel projection | Yes | 724 |
Line 1 of MLS | Line 2 of MLS | Line 1 of TLS | Line 2 of TLS | |
---|---|---|---|---|
Cylindrical projection | 2.942 | 1.819 | 6.046 | 5.027 |
Cylindrical voxel projection | 2.282 | 1.627 | 0.900 | 1.010 |
Images of the MLS Point Cloud | Images of the TLS Point Cloud | |
---|---|---|
Cylindrical projection | 59.5560 | 52.4164 |
Cylindrical voxel projection | 61.2554 | 53.0777 |
Variance of MLS | Mean of MLS | Entropy of MLS | Variance of TLS | Mean of TLS | Entropy of TLS | |
---|---|---|---|---|---|---|
Cylindrical projection | 0.0121 | 0.0714 | 1.3788 | 0.0126 | 0.0676 | 1.4056 |
Cylindrical voxel projection | 0.0102 | 0.0829 | 2.2516 | 0.0117 | 0.0735 | 1.5134 |
Leakage | Ring Number N | Leakage Area (m2) | Center of Mass Coordinates (Pixel) | 3D Space Coordinates (m) |
---|---|---|---|---|
1 | 1 | 0.756 | (657.791, 980.213) | (2.498, 209.974, −2.741) |
2 | 1~2 | 0.060 | (568.068, 602.747) | (−1.758, 208.540, 3.563) |
3 | 3~4 | 0.117 | (375.645, 695.213) | (−0.582, 205.499, 4.116) |
4 | 3~4 | 0.135 | (375.645, 695.213) | (−1.514, 205.523, 3.721) |
5 | 3~4 | 0.159 | (370.921, 452.596) | (−2.579, 205.559, 2.482) |
6 | 4~5 | 0.142 | (266.373, 855.500) | (1.266, 203.961, 3.871) |
7 | 8~9 | 0.935 | (870.535, 441.816) | (−2.811, 198.081, 1.499) |
8 | 8~9 | 0.280 | (865.696, 865.239) | (1.232, 197.986, 3.923) |
9 | 21 | 0.300 | (266.707, 1169.932) | (−0.880, 178.555, 4.0338) |
10 | 24~25 | 0.337 | (570.376, 824.719) | (2.831, 173.992, 0.969) |
11 | 31~32 | 0.319 | (231.366, 1038.018) | (2.703, 163.470, 2.264) |
12 | 31~32 | 0.186 | (239.993, 1115.967) | (2.807, 163.552, 1.305) |
13 | 40~41 | 0.538 | (230.715, 1105.329) | (2.354, 150.000, 2.887) |
14 | 41~42 | 0.765 | (333.161, 971.773) | (2.755, 148.494, 1.886) |
15 | 45~46 | 0.150 | (492.889, 930.972) | (1.981, 142.458, 3.357) |
16 | 52~53 | 0.548 | (833.991, 444.002) | (2.736, 132.172, 0.742) |
17 | 52~53 | 0.263 | (802.959, 540.726) | (2.236, 132.018, −0.353) |
18 | 53~54 | 0.479 | (708.246, 537.281) | (2.253, 130.458, −0.358) |
19 | 54~55 | 0.384 | (619.093, 76.473) | (1.141, 128.974, 3.917) |
20 | 55~56 | 0.897 | (530.896, 551.848) | (2.139, 127.989, −0.458) |
21 | 56~57 | 0.668 | (391.879, 553.594) | (2.081, 125.915, −0.542) |
22 | 56~57 | 0.300 | (315.264, 537.509) | (2.299, 124.581, −0.254) |
Leakage | Ring Number N | Leakage Area (m2) | Center of Mass Coordinates (Pixel) | 3D Space Coordinates (m) |
---|---|---|---|---|
1 | 13~14 | 3.567 | (478.513, 442.577) | (−9.435, 2.975, 59.642) |
2 | 19 | 0.175 | (14.090, 533.219) | (−16.645, 2.561, 58.830) |
3 | 20 | 0.604 | (798.713, 581.406) | (−18.535, 2.102, 58.383) |
4 | 25 | 0.956 | (433.152, 327.141) | (−24.278, 3.239, 61.309) |
5 | 25~26 | 1.741 | (393.358, 411.618) | (−24.897, 3.062, 59.715) |
6 | 28 | 0.230 | (165.222, 550.387) | (−28.657, 2.603, 58.992) |
7 | 32 | 0.136 | (819.547, 972.511) | (−32.643, −1.954, 59.263) |
8 | 32 | 0.086 | (787.483, 994.866) | (−33.183, −2.152, 59.554) |
9 | 37 | 0.104 | (418.788, 514.066) | (−38.984, 3.013, 59.553) |
10 | 44 | 0.187 | (565.055, 972.704) | (−47.105, −1.765, 59.536) |
11 | 44 | 0.081 | (518.550, 971.926) | (−47.864, −1.768, 59.564) |
12 | 47 | 0.127 | (331.788, 516.286) | (−50.793, 3.138, 59.643) |
13 | 49 | 0.125 | (183.788, 514.901) | (−53.127, 3.191, 59.752) |
14 | 49~50 | 0.358 | (112.099, 964.451) | (−54.566, −1.629, 59.585) |
15 | 54~55 | 0.093 | (504.485, 515.552) | (−60.505, 3.3001, 59.866) |
16 | 55~56 | 0.606 | (424.038, 960.872) | (−61.729, −1.616, 59.792) |
17 | 56~57 | 0.120 | (345.370, 513.240) | (−62.908, 3.336, 59.915) |
18 | 58 | 0.140 | (274.613, 970.361) | (−63.928, −1.503, 59.694) |
19 | 59 | 0.223 | (309.547, 38.237) | (−65.235, 3.326, 59.841) |
20 | 61 | 0.207 | (43.574, 516.370) | (−67.597, 3.355, 59.869) |
21 | 65 | 0.086 | (499.235, 515.139) | (−72.419, 3.411, 59.922) |
22 | 66~67 | 0.256 | (392.020, 301.836) | (−73.972, 3.859, 62.167) |
23 | 66~67 | 0.138 | (362.466, 515.896) | (−74.647, 3.437, 59.943) |
Model | MPA (%) | MIOU (%) | AIT (s) |
---|---|---|---|
U-net | 86.84 | 82.51 | 0.0372 |
DeepLabV3+ | 89.92 | 85.67 | 0.0673 |
Mask R-CNN | 92.02 | 87.49 | 0.0017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Kang, Z.; Cao, Z.; Xie, X.; Guan, B.; Pan, Y.; Chang, J. Combining Cylindrical Voxel and Mask R-CNN for Automatic Detection of Water Leakages in Shield Tunnel Point Clouds. Remote Sens. 2024, 16, 896. https://doi.org/10.3390/rs16050896
Chen Q, Kang Z, Cao Z, Xie X, Guan B, Pan Y, Chang J. Combining Cylindrical Voxel and Mask R-CNN for Automatic Detection of Water Leakages in Shield Tunnel Point Clouds. Remote Sensing. 2024; 16(5):896. https://doi.org/10.3390/rs16050896
Chicago/Turabian StyleChen, Qiong, Zhizhong Kang, Zhen Cao, Xiaowei Xie, Bowen Guan, Yuxi Pan, and Jia Chang. 2024. "Combining Cylindrical Voxel and Mask R-CNN for Automatic Detection of Water Leakages in Shield Tunnel Point Clouds" Remote Sensing 16, no. 5: 896. https://doi.org/10.3390/rs16050896
APA StyleChen, Q., Kang, Z., Cao, Z., Xie, X., Guan, B., Pan, Y., & Chang, J. (2024). Combining Cylindrical Voxel and Mask R-CNN for Automatic Detection of Water Leakages in Shield Tunnel Point Clouds. Remote Sensing, 16(5), 896. https://doi.org/10.3390/rs16050896