A Novel Approach for As-Built BIM Updating Using Inertial Measurement Unit and Mobile Laser Scanner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed System
2.2. Experimental Sites and Data Collection
2.2.1. Study Area
2.2.2. Data Collection
2.3. Data Processing
2.3.1. IMU Position Estimation
2.3.2. IMU and MLS Time Synchronization
2.3.3. Data Integration between IMU and MLS Data
2.3.4. Point Clouds Registration
2.4. Updating the BIM Model
2.5. Accuracy Assessment
3. Results
3.1. Overall Accuracy of the Clouds
3.2. Point-to-Point Comparison
3.3. Contents Comparison
3.4. Time Duration and Cost
3.5. Updated BIM Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Eybpoosh, M.; Akinci, B. Developing as-built building information model using construction process history captured by a laser scanner and a camera. In Construction Research Congress 2012: Construction Challenges in a Flat World; Cai, H., Kandil, A., Hastak, M., Dunston, P.S., Eds.; American Society of Civil Engineers: West Lafayette, IN, USA, 2012; pp. 1232–1241. [Google Scholar] [CrossRef]
- Jung, J.; Hong, S.; Jeong, S.; Kim, S.; Cho, H.; Hong, S.; Heo, J. Productive modeling for development of as-built BIM of existing indoor structures. Autom. Constr. 2014, 42, 68–77. [Google Scholar] [CrossRef]
- Xiong, X.; Adan, A.; Akinci, B.; Huber, D. Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 2013, 31, 325–337. [Google Scholar] [CrossRef]
- Thomson, C.; Boehm, J. Automatic geometry generation from point clouds for BIM. Remote Sens. 2015, 7, 11753–11775. [Google Scholar] [CrossRef]
- Tzedaki, V.; Kamara, J.M. Capturing as-built information for a BIM environment using 3D laser scanner: A process model. In AEI 2013: Building Solutions for Architectural Engineering, Proceedings of the Architectural Engineering Conference 2013, State College, PA, USA, 3 April 2013; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 486–495. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Forsythe, P.; Shirowzhan, S. Evaluation of terrestrial and mobile scanner technologies for part-built information modeling. J. Constr. Eng. Manag. 2018, 144, 04018110. [Google Scholar] [CrossRef]
- Gao, T.; Akinci, B.; Ergan, S.; Garrett, J. An approach to combine progressively captured point clouds for BIM update. Adv. Eng. Inform. 2015, 29, 1001–1012. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Zhu, Z.; Brilakis, I. Comparison of optical sensor-based spatial data collection techniques for civil infrastructure modeling. J. Comput. Civ. Eng. 2009, 23, 170–177. [Google Scholar] [CrossRef]
- Koch, T.; Korner, M.; Fraundorfer, F. Automatic alignment of indoor and outdoor building models using 3D line segments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 10–18. [Google Scholar] [CrossRef]
- Tsai, G.; Xu, C.; Liu, J.; Kuipers, B. Real-time indoor scene understanding using bayesian filtering with motion cues. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 121–128. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Tang, S.; Darwish, W.; Hu, Y.; Chen, W. Automatic indoor as-built building information models generation by using low-cost RGB-D sensors. Sensors 2020, 20, 293. [Google Scholar] [CrossRef]
- Shao, W.; Vijayarangan, S.; Li, C.; Kantor, G. Stereo visual inertial lidar simultaneous localization and mapping. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 370–377. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, J.; Jiang, C.; Zhu, L.; Lehtomäki, M.; Kaartinen, H.; Kaijaluoto, R.; Wang, Y.; Hyyppä, J.; Hyyppä, H. The accuracy comparison of three simultaneous localization and mapping (SLAM)-based indoor mapping technologies. Sensors 2018, 18, 3228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ye, C. An indoor wayfinding system based on geometric features aided graph SLAM for the visually impaired. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1592–1604. [Google Scholar] [CrossRef]
- Graven, O.H.; Srisuphab, A.; Silapachote, P.; Sirilertworakul, V.; Ampornwathanakun, W.; Anekwiroj, P.; Maitrichit, N. An autonomous indoor exploration robot rover and 3d modeling with photogrammetry. In Proceedings of the 2018 International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI-NCON), Chiang Rai, Thailand, 25–28 February 2018; pp. 44–47. [Google Scholar] [CrossRef]
- Debeunne, C.; Vivet, D. A review of visual-LiDAR fusion based simultaneous localization and mapping. Sensors 2020, 20, 2068. [Google Scholar] [CrossRef] [PubMed]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Karam, S.; Vosselman, G.; Peter, M.; Hosseinyalamdary, S.; Lehtola, V. Design, calibration, and evaluation of a backpack indoor mobile mapping system. Remote Sens. 2019, 11, 905. [Google Scholar] [CrossRef]
- Alsadik, B.; Karam, S. The simultaneous localization and mapping (SLAM)—An overview. Surv. Geospat. Eng. J. 2021, 2, 34–45. [Google Scholar] [CrossRef]
- Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Autom. Constr. 2010, 19, 829–843. [Google Scholar] [CrossRef]
- Barber, D.; Mills, J.; Smith-Voysey, S. Geometric validation of a ground-based mobile laser scanning system. ISPRS J. Photogramm. Remote Sens. 2008, 63, 128–141. [Google Scholar] [CrossRef]
- De Croon, G.; De Wagter, C. Challenges of autonomous flight in indoor environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1003–1009. [Google Scholar] [CrossRef]
- Roberts, R.; Inzerillo, L.; Di Mino, G. Using UAV based 3D modelling to provide smart monitoring of road pavement conditions. Information 2020, 11, 568. [Google Scholar] [CrossRef]
- Wang, C.; Cho, Y.K.; Kim, C. Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Autom. Constr. 2015, 56, 1–13. [Google Scholar] [CrossRef]
- Jung, J.; Stachniss, C.; Ju, S.; Heo, J. Automated 3D volumetric reconstruction of multiple-room building interiors for as-built BIM. Adv. Eng. Inform. 2018, 38, 811–825. [Google Scholar] [CrossRef]
- Truong-Hong, L.; Laefer, D.F.; Hinks, T.; Carr, H. Flying voxel method with Delaunay triangulation criterion for façade/feature detection for computation. J. Comput. Civ. Eng. 2012, 26, 691–707. [Google Scholar] [CrossRef]
- Mahdjoubi, L.; Moobela, C.; Laing, R. Providing real-estate services through the integration of 3D laser scanning and building information modelling. Comput. Ind. 2013, 64, 1272–1281. [Google Scholar] [CrossRef]
- Wang, B.; Yin, C.; Luo, H.; Cheng, J.C.; Wang, Q. Fully automated generation of parametric BIM for MEP scenes based on terrestrial laser scanning data. Autom. Constr. 2021, 125, 103615. [Google Scholar] [CrossRef]
- Sanchez, V.; Zakhor, A. Planar 3D modeling of building interiors from point cloud data. In Proceedings of the 2012 IEEE International Conference on Image Processing, Lake Buena Vista, FL, USA, 30 Spetember–3 October 2012; pp. 1777–1780. [Google Scholar] [CrossRef]
- Lehtola, V.V.; Kaartinen, H.; Nüchter, A.; Kaijaluoto, R.; Kukko, A.; Litkey, P.; Honkavaara, E.; Rosnell, T.; Vaaja, M.T.; Virtanen, J.-P. Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods. Remote Sens. 2017, 9, 796. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Q.; Yang, B.; Xiao, W.; Chen, C.; Dong, Z. Automatic 3-D reconstruction of indoor environment with mobile laser scanning point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3117–3130. [Google Scholar] [CrossRef]
- Pučko, Z.; Šuman, N.; Rebolj, D. Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Adv. Eng. Inform. 2018, 38, 27–40. [Google Scholar] [CrossRef]
- Omar, T.; Nehdi, M.L. Data acquisition technologies for construction progress tracking. Autom. Constr. 2016, 70, 143–155. [Google Scholar] [CrossRef]
- Lau, L.; Quan, Y.; Wan, J.; Zhou, N.; Wen, C.; Qian, N.; Jing, F. An autonomous ultra-wide band-based attitude and position determination technique for indoor mobile laser scanning. ISPRS Int. J. Geo-Inf. 2018, 7, 155. [Google Scholar] [CrossRef]
- Chen, C.; Tang, L.; Hancock, C.M.; Zhang, P. Development of low-cost mobile laser scanning for 3D construction indoor mapping by using inertial measurement unit, ultra-wide band and 2D laser scanner. Eng. Constr. Archit. Manag. 2019, 26, 1367–1386. [Google Scholar] [CrossRef]
- LMS5xx LiDAR Sensors. SICK: Waldkrich, Germany. Available online: https://www.sick.com/cl/en/catalog/products/lidar-and-radar-sensors/lidar-sensors/lms5xx/c/g179651 (accessed on 25 October 2023).
- MTi-100. Movella. Hendersen, NV, USA. Available online: https://www.movella.com/products/sensor-modules/xsens-mti-100-imu (accessed on 25 October 2023).
- Yan, J.; He, G.; Basiri, A.; Hancock, C. 3-D passive-vision-aided pedestrian dead reckoning for indoor positioning. IEEE Trans. Instrum. Meas. 2019, 69, 1370–1386. [Google Scholar] [CrossRef]
- Jimenez, A.R.; Seco, F.; Prieto, C.; Guevara, J. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In Proceedings of the 2009 IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 26–28 August 2009; pp. 37–42. [Google Scholar] [CrossRef]
- Yan, J.; He, G.; Basiri, A.; Hancock, C. Vision-aided indoor pedestrian dead reckoning. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Huston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Racko, J.; Brida, P.; Perttula, A.; Parviainen, J.; Collin, J. Pedestrian dead reckoning with particle filter for handheld smartphone. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Madrid, Spain, 4–7 October 2016; pp. 1–7. [Google Scholar] [CrossRef]
- CloudCompare Wiki. Available online: https://www.cloudcompare.org/doc/wiki/index.php/Main_Page (accessed on 26 March 2023).
- MeshLab. Available online: https://www.meshlab.net/ (accessed on 3 July 2024).
- Zwillinger, D. CRC Standard Mathematical Tables and Formulae; Chapman and Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Arnaud, A.; Gouiffès, M.; Ammi, M. Towards real-time 3D editable model generation for existing indoor building environments on a tablet. Front. Virtual Real. 2022, 3, 782564. [Google Scholar] [CrossRef]
- Rausch, C.; Haas, C. Automated shape and pose updating of building information model elements from 3D point clouds. Autom. Constr. 2021, 124, 103561. [Google Scholar] [CrossRef]
- Chuang, T.-Y.; Yang, M.-J. Change component identification of BIM models for facility management based on time-variant BIMs or point clouds. Autom. Constr. 2023, 147, 104731. [Google Scholar] [CrossRef]
- Meyer, T.; Brunn, A.; Stilla, U. Change detection for indoor construction progress monitoring based on BIM, point clouds and uncertainties. Autom. Constr. 2022, 141, 104442. [Google Scholar] [CrossRef]
- Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A. Aiding indoor photogrammetry with UWB sensors. Photogramm. Eng. Remote Sens. 2019, 85, 369–378. [Google Scholar] [CrossRef]
- Osadcha, I.; Jurelionis, A.; Fokaides, P. Geometric parameter updating in digital twin of built assets: A systematic literature review. J. Build. Eng. 2023, 73, 106704. [Google Scholar] [CrossRef]
- HDS7000. Leica Geosystems. Heerbrugg, Switzerland. Available online: https://www.yumpu.com/en/document/read/21423705/hds-7000-northern-survey-supply (accessed on 25 October 2023).
- Ahmadabadian, A.H.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F. Clustering and selecting vantage images in a low-cost system for 3D reconstruction of texture-less objects. Measurement 2017, 99, 185–191. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-image 3D reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rashidi, M.; Mousavi, V.; Karami, A.; Yu, Y.; Samali, B. Quality evaluation of digital twins generated based on UAV photogrammetry and TLS: Bridge case study. Remote Sens. 2021, 13, 3499. [Google Scholar] [CrossRef]
- Morgan, J.A.; Brogan, D.J.; Nelson, P.A. Application of Structure-from-Motion photogrammetry in laboratory flumes. Geomorphology 2017, 276, 125–143. [Google Scholar] [CrossRef]
- Georgantas, A.; Brédif, M.; Pierrot-Desseilligny, M. An accuracy assessment of automated photogrammetric techniques for 3D modeling of complex interiors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 23–28. [Google Scholar] [CrossRef]
- Jo, Y.H.; Hong, S. Three-dimensional digital documentation of cultural heritage site based on the convergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry. ISPRS Int. J. Geo-Inf. 2019, 8, 53. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Lewińska, P.; Róg, M.; Żądło, A.; Szombara, S. To save from oblivion: Comparative analysis of remote sensing means of documenting forgotten architectural treasures–Zagórz Monastery complex, Poland. Measurement 2022, 189, 110447. [Google Scholar] [CrossRef]
- Hellmuth, R. Update approches and methods for digital building models—Literature review. J. Inf. Technol. Constr. 2022, 27, 191–222. [Google Scholar]
- MTi-100. Available online: https://www.xsens.com/hubfs/Downloads/Leaflets/MTi-100.pdf?__hstc=157421285.4985f0839b0d76fbe6623164b247e110.1719292911553.1719292911553.1719292911553.1&__hssc=157421285.3.1719292911553&__hsfp=4040703939 (accessed on 25 June 2024).
Function | Area | Max. Width | Max. Length | |
---|---|---|---|---|
Ground Floor | Open space | 220 m2 | 12.5 m | 21 m |
First Floor | Self-study room | 140 m2 | 11.2 m | 12 m |
Second Floor | Classroom | 125 m2 | 10 m | 13 m |
Third Floor | PhD room | 125 m2 | 10.5 m | 12.5 m |
Fourth Floor | Office | 140 m2 | 11.3 m | 12 m |
Cloud Objects Merged by Common Points | Cloud Objects Merged by the Proposed Approach | |||||||
---|---|---|---|---|---|---|---|---|
Mean | STD | Max Distance | Error Less Than 0.1 m | Mean | STD | Max Distance | Error Less Than 0.1 m | |
Classroom | 0.052 | 0.092 | 0.939 | 76.7% | 0.032 | 0.067 | 0.690 | 88.6% |
CSET GF | 0.125 | 0.182 | 1.401 | 39.8% | 0.061 | 0.062 | 0.826 | 76.3% |
CSET 1F | 0.137 | 0.142 | 1.245 | 44.4% | 0.065 | 0.099 | 0.579 | 81.5% |
CSET 2F | 0.105 | 0.148 | 1.187 | 64.9% | 0.024 | 0.062 | 0.886 | 91.1% |
CSET 3F | 0.125 | 0.146 | 1.252 | 54.8% | 0.034 | 0.058 | 0.649 | 90.3% |
CSET 4F | 0.134 | 0.155 | 1.226 | 49.7% | 0.041 | 0.068 | 0.631 | 86.9% |
Classroom | CSET G | CSET 1F | CSET 2F | CSET 3F | CSET 4F | |
---|---|---|---|---|---|---|
Samples | 68 | 32 | 32 | 32 | 30 | 26 |
Clouds Merged by Common Points | Clouds Merged by the Proposed Approach | |||||
---|---|---|---|---|---|---|
Mean | STD | 95% CI Point | Mean | STD | 95% CI Point | |
Classroom | 0.3912 | 0.3583 | 0.8654 | 0.2404 | 0.2944 | 0.7889 |
CSET GF | 0.4203 | 0.2185 | 0.7912 | 0.1635 | 0.1206 | 0.3198 |
CSET 1F | 0.4337 | 0.2286 | 0.9479 | 0.2317 | 0.1678 | 0.5625 |
CSET 2F | 0.4532 | 0.2848 | 0.8693 | 0.1809 | 0.1490 | 0.4251 |
CSET 3F | 0.4195 | 0.1827 | 0.7556 | 0.1729 | 0.1555 | 0.4495 |
CSET 4F | 0.3900 | 0.3567 | 0.6480 | 0.1537 | 0.1292 | 0.3771 |
Change Rate (%) | Correctness (%) | |
---|---|---|
Classroom | 74.3 | 98.7 |
CSET ground floor | 88.5 | 92.7 |
CSET first floor | 86.7 | 93.6 |
CSET second floor | 79.4 | 100 |
CSET third floor | 100 | 100 |
CSET fourth floor | 14.3 | 97.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, Y.-T.; Hancock, C.; Hamm, N.A.S.; Zhang, Z. A Novel Approach for As-Built BIM Updating Using Inertial Measurement Unit and Mobile Laser Scanner. Remote Sens. 2024, 16, 2743. https://doi.org/10.3390/rs16152743
Yang Y, Chen Y-T, Hancock C, Hamm NAS, Zhang Z. A Novel Approach for As-Built BIM Updating Using Inertial Measurement Unit and Mobile Laser Scanner. Remote Sensing. 2024; 16(15):2743. https://doi.org/10.3390/rs16152743
Chicago/Turabian StyleYang, Yuchen, Yung-Tsang Chen, Craig Hancock, Nicholas A. S. Hamm, and Zhiang Zhang. 2024. "A Novel Approach for As-Built BIM Updating Using Inertial Measurement Unit and Mobile Laser Scanner" Remote Sensing 16, no. 15: 2743. https://doi.org/10.3390/rs16152743
APA StyleYang, Y., Chen, Y. -T., Hancock, C., Hamm, N. A. S., & Zhang, Z. (2024). A Novel Approach for As-Built BIM Updating Using Inertial Measurement Unit and Mobile Laser Scanner. Remote Sensing, 16(15), 2743. https://doi.org/10.3390/rs16152743