Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant Species Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Target and Area
2.2. Input Data
2.3. Classification Procedure
3. Results
4. Discussion
5. Conclusions
- the recommended classification method of goldenrod is the use of two classes: (a) homogeneous goldenrod (canopy almost homogeneously covered by goldenrod) and (b) a mix class (confirms the presence of goldenrod, but other plants dominate). The classification results may be lower by a few percentage points, but reflect more accurately cores of the invasion and also indicate the beginnings and directions of the invasion (around the homogeneous patches of goldenrod are visible mixes).
- multitemporal images of Sentinel-2 offer more information than high-resolution PlanetScope images. In the case of compact and dense patches covered with goldenrod, the differences in accuracy (median of the F1-score) are comparable, but in the case of new invasions with a heterogeneous canopy, the classification scores differ by up to 50% in favor of the Sentinel-2 images.
- the RF algorithm offers better identification results of pure goldenrod patches than SVM for both Sentinel-2 and PlanetScope images, but SVM offers higher median results of heterogeneous patches of goldenrod and native plants in early stages of the invasion.
- the RF algorithm obtains the best identification of goldenrod from the Sentinel-2 images with F1-score results exceeding 0.9 in any scenario involving any number of homogeneous goldenrod training pixels.
- the best period to identify the goldenrod is the time of flowering, and the highest MDA values were obtained using the September Sentinel-2 and PlanetScope scenes, but the autumn images are not much worse. This may be due to large dry, faded inflorescence panicles, which reflect a large amount of the spectrum characteristic of this species.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, E. The dynamics of plant invasions: A case study of three exotic goldenrod species (Solidago L.) in Europe. J. Biogeogr. 1998, 25, 147–154. [Google Scholar] [CrossRef]
- Abhilasha, D.; Quintana, N.; Vivanco, J.; Joshi, J. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? J. Ecol. 2008, 96, 993–1001. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Cianfaglione, K.; Nagy, D.U.; Canale, A.; Maggi, F. Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides. J. Pest Sci. 2019, 92, 805–821. [Google Scholar] [CrossRef]
- General Directorate for Environmental Protection (GDOŚ). List of Alien Plant Species Analyzed in the Project. Available online: http://projekty.gdos.gov.pl/igo-lista-inwazyjnych-gatunkow-obcych-roslin (accessed on 14 June 2023). (In Polish)
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef]
- Niphadkar, M.; Nagendra, H. Remote sensing of invasive plants: Incorporating functional traits into the picture. Int. J. Remote Sens. 2016, 37, 3074–3085. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Mapping Invasive Plant Species with Hyperspectral Data Based on Iterative Accuracy Assessment Techniques. Remote Sens. 2022, 14, 64. [Google Scholar] [CrossRef]
- Rizaludin Mahmud, M.; Numata, S.; Hosaka, T. Mapping an invasive goldenrod of Solidago altissima in urban landscape of Japan using multi-scale remote sensing and knowledge-based classification. Ecol. Indic. 2020, 111, 105975. [Google Scholar] [CrossRef]
- Akandil, C.; Meier, P.; Otaru, O.; Joshi, J. Mapping invasive giant goldenrod (Solidago gigantea) with multispectral images acquired by unmanned aerial vehicle. J. Digit. Landsc. Archit. 2021, 6, 245–256. [Google Scholar] [CrossRef]
- Ishii, J.; Washitani, I. Early detection of the invasive alien plant Solidago altissima in moist tall grassland using hyperspectral imagery. Int. J. Remote Sens. 2013, 34, 5926–5936. [Google Scholar] [CrossRef]
- Sentinel-2. Satellite Description. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/satellite-description (accessed on 23 January 2024).
- Copernicus Browser. Available online: https://dataspace.copernicus.eu/browser/ (accessed on 23 January 2024).
- Tarca, G.; Hoelzle, M.; Guglielmin, M. Using PlanetScope images to investigate the evolution of small glaciers in the Alps. Remote Sens. Appl. Soc. Environ. 2023, 32, 101013. [Google Scholar] [CrossRef]
- PlanetScope Instruments. Available online: https://earth.esa.int/eogateway/missions/planetscope#instruments-section (accessed on 23 January 2024).
- PlanetScope Product Specifications. Available online: https://assets.planet.com/docs/Planet_PSScene_Imagery_Product_Spec_letter_screen.pdf (accessed on 23 January 2024).
- Planet’s Education and Research Program. Available online: https://www.planet.com/markets/education-and-research/?utm_source=google&utm_medium=paid-search&gad_source=1&gclid=Cj0KCQiAsburBhCIARIsAExmsu4y4PtuIaA4hnmoAYdHLH53PYGCK18cRMmJMELRPpCd0oMlHD4pkzEaAvCwEALw_wcB (accessed on 23 January 2024).
- Rajah, P.; Odindi, J.; Mutanga, O.; Kiala, Z. The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture Radar (SAR) for invasive alien species detection and mapping. Nat. Conserv. 2019, 35, 41–61. [Google Scholar] [CrossRef]
- Nkhwanana, N.; Adam, E.; Ramoelo, A. Assessing the utility of Sentinel-2 MSI in mapping an encroaching Serephium plumosum in South African rangeland. Appl. Geomat. 2022, 14, 435–449. [Google Scholar] [CrossRef]
- Bakacsy, L.; Tobak, Z.; van Leeuwen, B.; Szilassi, P.; Biró, C.; Szatmári, J. Drone-Based Identification and Monitoring of Two Invasive Alien Plant Species in Open Sand Grasslands by Six RGB Vegetation Indices. Drones 2023, 7, 207. [Google Scholar] [CrossRef]
- Royimani, L.; Mutanga, O.; Odindi, J.; Dube, T.; Matongera, T.N. Advancements in satellite remote sensing for mapping and monitoring of alien invasive plant species (AIPs). Phys. Chem. Earth 2019, 112, 237–245. [Google Scholar] [CrossRef]
- Ahmed, N.; Atzberger, C.; Zewdie, W. Species Distribution Modelling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia. Ecol. Process. 2021, 10, 18. [Google Scholar] [CrossRef]
- Liu, P.; Choo, K.-K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing image classification. Soft Comput. 2017, 21, 7053–7065. [Google Scholar] [CrossRef]
- Bergamo, T.F.; de Lima, R.S.; Kull, T.; Ward, R.D.; Sepp, K.; Villoslada, M. From UAV to PlanetScope: Upscaling fractional cover of an invasive species Rosa rugosa. J. Environ. Manag. 2023, 336, 117693. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.A.; Azam, M.F.; Vincent, C. Efficiency of artificial neural networks for glacier ice-thickness estimation: A case study in western Himalaya, India. J. Glaciol. 2021, 67, 671–684. [Google Scholar] [CrossRef]
- Waśniewski, A.; Hościło, A.; Zagajewski, B.; Moukétou-Tarazewicz, D. Assessment of Sentinel-2 Satellite Images and Random Forest Classifier for Rainforest Mapping in Gabon. Forests 2020, 11, 941. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Witharana, C.; Liljedahl, A.K.; Jones, B.M.; Daanen, R.; Epstein, H.E.; Kent, K.; Griffin, C.G.; Agnew, A. Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery. J. Imaging 2020, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Papp, L.; van Leeuwen, B.; Szilassi, P.; Tobak, Z.; Szatmári, J.; Árvai, M.; Mészáros, J.; Pásztor, L. Monitoring Invasive Plant Species Using Hyperspectral Remote Sensing Data. Land 2021, 10, 29. [Google Scholar] [CrossRef]
- Jensen, T.; Seerup Hass, F.; Seam Akbar, M.; Holm Petersen, P.; Jokar Arsanjani, J. Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States. Sustainability 2020, 12, 3544. [Google Scholar] [CrossRef]
- Lake, T.A.; Briscoe Runquist, R.D.; Moeller, D.A. Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery. Remote Sens. Ecol. Conserv. 2022, 8, 875–889. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Dilts, T.E.; Greenberg, J.A.; Johnson, K.N.; Pai, H.; Sladek, C.; Kratt, C.; Tyler, S.W.; Ready, A. Phenology-based classification of invasive annual grasses to the species level. Remote Sens. Environ. 2021, 263, 112568. [Google Scholar] [CrossRef]
- Nagy, D.U.; Rauschert, E.S.J.; Henn, T.; Cianfaglione, K.; Stranczinger, S.; Pal, R.W. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 2020, 60, 232–240. [Google Scholar] [CrossRef]
- COAH, ESA’s Copernicus Open Access Hub. 2022. Available online: https://scihub.copernicus.eu/ (accessed on 1 December 2022).
- PE, PlanetScope Explorer. 2022. Available online: https://www.planet.com/explorer/ (accessed on 18 December 2022).
- Kluczek, M.; Zagajewski, B.; Zwijacz-Kozica, T. Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and Airborne HySpex Hyperspectral Imagery. Remote Sens. 2023, 15, 844. [Google Scholar] [CrossRef]
- Zdunek, K.B. Assessment of Sentinel-2 Satellite Images for the Identification of Goldenrod Species (Solidago spp.). Bachelor’s Thesis, Geography within Inter-faculty Individual Studies in Mathematics and Natural Sciences. University of Warsaw, Warsaw, Poland, 30 June 2022; p. 39. [Google Scholar]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. 2022. Available online: https://gdal.org/ (accessed on 10 November 2022).
- Shao, G.; Tang, L.; Liao, J. Overselling overall map accuracy misinforms about research reliability. Landsc. Ecol. 2019, 34, 2487–2492. [Google Scholar] [CrossRef]
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
- Dao, P.D.; Axiotis, A.; He, Y. Mapping native and invasive grassland species and characterizing topography-driven species dynamics using high spatial resolution hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102542. [Google Scholar] [CrossRef]
- Mouta, N.; Silva, R.; Pais, S.; Alonso, J.M.; Gonçalves, J.F.; Honrado, J.; Vicente, J.R. ‘The Best of Two Worlds’—Combining Classifier Fusion and Ecological Models to Map and Explain Landscape Invasion by an Alien Shrub. Remote Sens. 2021, 13, 3287. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Friedman, M.S.; McMillan, N.A.; Hammond, W.M.; Hassani, K.; Sams, A.V.; Charles, M.D.; Garrett, D.R.; Joshi, O.; Hamilton, R.G.; et al. Mapping invasive alien species in grassland ecosystems using airborne imaging spectroscopy and remotely observable vegetation functional traits. Remote Sens. Environ. 2022, 271, 112887. [Google Scholar] [CrossRef]
- Li, H.-D.; Zeng, M.-M.; Tan, B.-B.; Liang, Y.-Z.; Xu, Q.-S.; Cao, D.-S. Recipe for revealing informative metabolites based on model population analysis. Metabolomics 2010, 6, 353–361. [Google Scholar] [CrossRef]
- Kycko, M.; Zagajewski, B.; Zwijacz-Kozica, M.; Cierniewski, J.; Romanowska, E.; Orłowska, K.; Ochtyra, A.; Jarocińska, A. Assessment of Hyperspectral Remote Sensing for Analyzing the Impact of Human Trampling on Alpine Swards. Mt. Res. Dev. 2017, 37, 66–74. [Google Scholar] [CrossRef]
- Zagajewski, B.; Kycko, M.; Tømmervik, H.; Bochenek, Z.; Wojtuń, B.; Bjerke, J.W.; Kłos, A. Feasibility of hyperspectral vegetation indices for the detection of chlorophyll concentration in three high Arctic plants: Salix polaris, Bistorta vivipara, and Dryas octopetala. Acta Soc. Bot. Pol. 2018, 87, 3604. [Google Scholar] [CrossRef]
- Raczko, E.; Krówczyńska, M.; Wilk, E. Asbestos roofing recognition by use of convolutional neural networks and high-resolution aerial imagery. Testing different scenarios. Build. Environ. 2022, 217, 109092. [Google Scholar] [CrossRef]
- Smerdu, A.; Kanjir, U.; Kokalj, Ž. Automatic detection of Japanese knotweed in urban areas from aerial and satellite data. Manag. Biol. Invasions 2020, 11, 661–676. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.; Tian, Q.; Ren, Y.; Dong, X.; Zhang, Z. Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7589–7603. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Zhang, N.; Wang, Y.; Xu, X.; Zhang, A. Spatiotemporal Pattern of Invasive Pedicularis in the Bayinbuluke Land, China, during 2019–2021: An Analysis Based on PlanetScope and Sentinel-2 Data. Remote Sens. 2023, 15, 4383. [Google Scholar] [CrossRef]
- Marzialetti, F.; Di Febbraro, M.; Frate, L.; De Simone, W.; Acosta, A.T.R.; Carranza, M.L. Synergetic use of unmanned aerial vehicle and satellite images for detecting non-native tree species: An insight into Acacia saligna invasion in the Mediterranean coast. Front. Environ. Sci. 2022, 10, 880626. [Google Scholar] [CrossRef]
- Rakotoarivony, M.N.A.; Gholizadeh, H.; Hammond, W.M.; Hassani, K.; Joshi, O.; Hamilton, R.G.; Fuhlendorf, S.D.; Trowbridge, A.M.; Adams, H.D. Detecting the invasive Lespedeza cuneata in grasslands using commercial small satellite imagery. Int. J. Remote Sens. 2023, 44, 6802–6824. [Google Scholar] [CrossRef]
- Han, X.; Wang, Y.; Ke, Y.; Liu, T.; Zhou, D. Phenological heterogeneities of invasive Spartina alterniflora salt marshes revealed by high-spatial-resolution satellite imagery. Ecol. Indic. 2022, 144, 109492. [Google Scholar] [CrossRef]
Sentinel-2 | PlanetScope | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bands | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8A | 9 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Central wavelength (nm) | 443 | 490 | 560 | 665 | 705 | 740 | 783 | 842 | 865 | 940 | 1610 | 2190 | 443 | 490 | 531 | 565 | 610 | 665 | 705 | 865 |
Interoperable with Sentinel-2 | – | – | – | – | – | – | – | – | – | – | – | – | 1 | 2 | NA | 3 | NA | 4 | 5 | 8a |
Spatial resolution (m) | 60 | 10 | 10 | 10 | 20 | 20 | 20 | 10 | 20 | 60 | 20 | 20 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Available temporal resolution (days) | 5 | 1 | ||||||||||||||||||
Radiometric resolution (bits) | 12 | 16 | ||||||||||||||||||
Orbit altitude | 786 km (98.62°; heliosynchronous) | 475–525 km (~98°; heliosynchronous); PSB.SD | ||||||||||||||||||
Frame size | swath width: 290 km | 32.5 km × 19.6 km; PSB.SD |
Sentinel-2 | PlanetScope | ||
---|---|---|---|
Number of Polygons | Number of Pixels | Number of Pixels | |
goldenrod | 54 | 1254 | 9993 |
mix | 43 | 1922 | 10,999 |
forest | 40 | 46,568 | 754,738 |
agriculture crops | 75 | 38,580 | 491,142 |
built-up areas | 55 | 25,941 | 108,968 |
surface waters | 27 | 96,505 | 859,943 |
RF | SVM | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training pixels | 50 | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 700 | 50 | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 700 |
1st | 0.93 | 0.93 | 0.94 | 0.94 | 0.94 | 0.94 | 0.95 | 0.95 | 0.94 | 0.92 | 0.93 | 0.93 | 0.94 | 0.93 | 0.94 | 0.93 | 0.94 | 0.93 |
2nd | 0.92 | 0.92 | 0.94 | 0.93 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.91 | 0.93 | 0.92 | 0.93 | 0.92 | 0.93 | 0.93 | 0.92 | 0.93 |
3rd | 0.92 | 0.92 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.94 | 0.94 | 0.91 | 0.92 | 0.92 | 0.92 | 0.92 | 0.93 | 0.92 | 0.92 | 0.92 |
F1-score > 0.90 | 10 | 12 | 19 | 17 | 16 | 22 | 31 | 28 | 35 | 5 | 11 | 13 | 6 | 8 | 10 | 6 | 13 | 13 |
Median | 0.73 | 0.77 | 0.81 | 0.82 | 0.84 | 0.86 | 0.87 | 0.86 | 0.87 | 0.65 | 0.73 | 0.74 | 0.74 | 0.77 | 0.79 | 0.79 | 0.80 | 0.81 |
Mean | 0.70 | 0.73 | 0.76 | 0.76 | 0.79 | 0.81 | 0.82 | 0.82 | 0.82 | 0.65 | 0.70 | 0.70 | 0.69 | 0.72 | 0.73 | 0.72 | 0.74 | 0.74 |
RF | SVM | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training pixels | 50 | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 700 | 1000 | 50 | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 700 | 1000 |
1st | 0.94 | 0.95 | 0.94 | 0.92 | 0.94 | 0.95 | 0.94 | 0.94 | 0.94 | 0.95 | 0.93 | 0.94 | 0.93 | 0.93 | 0.94 | 0.94 | 0.92 | 0.93 | 0.94 | 0.95 |
2nd | 0.91 | 0.93 | 0.93 | 0.92 | 0.93 | 0.93 | 0.93 | 0.94 | 0.93 | 0.95 | 0.91 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.91 | 0.93 | 0.94 | 0.92 |
3rd | 0.90 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | 0.92 | 0.91 | 0.92 | 0.93 | 0.92 |
>0.90 | 3 | 12 | 12 | 8 | 13 | 16 | 16 | 16 | 20 | 20 | 4 | 3 | 5 | 4 | 7 | 8 | 8 | 9 | 12 | 7 |
Median | 0.58 | 0.66 | 0.59 | 0.62 | 0.62 | 0.65 | 0.64 | 0.65 | 0.64 | 0.67 | 0.39 | 0.39 | 0.39 | 0.41 | 0.40 | 0.42 | 0.40 | 0.43 | 0.42 | 0.40 |
Mean | 0.59 | 0.64 | 0.63 | 0.62 | 0.64 | 0.66 | 0.66 | 0.66 | 0.67 | 0.68 | 0.45 | 0.45 | 0.44 | 0.48 | 0.48 | 0.48 | 0.48 | 0.50 | 0.49 | 0.49 |
Sentinel-2 | |||||||
---|---|---|---|---|---|---|---|
Band | 9 September 2021 | 29 October 2021 | 3 November 2021 | Mean | Order | Range | Central wavelength (nm) |
B1 | 16.90 | 35.81 | 39.63 | 30.78 | 1 | Coastal aerosol | 442.7 |
B2 | 23.07 | 24.13 | 17.02 | 21.41 | 7 | Blue | 492.4 |
B3 | 34.75 | 17.54 | 15.19 | 22.49 | 3 | Green | 559.8 |
B4 | 24.88 | 22.78 | 18.96 | 22.21 | 5 | Red | 664.6 |
B5 | 34.45 | 15.79 | 14.27 | 21.50 | 6 | Red-edge | 704.1 |
B6 | 17.44 | 16.29 | 12.55 | 15.43 | 12 | Red-edge | 740.5 |
B7 | 18.62 | 16.06 | 11.79 | 15.49 | 11 | Red-edge | 782.8 |
B8 | 21.79 | 16.9 | 11.34 | 16.68 | 10 | NIR | 832.8 |
B8A | 21.58 | 18.19 | 11.73 | 17.17 | 9 | Narrow NIR | 864.7 |
B9 | 30.19 | 17.72 | 21.92 | 23.28 | 2 | NIR | 945.1 |
B11 | 23.65 | 19.93 | 15.38 | 19.65 | 8 | SWIR | 1613.7 |
B12 | 28.40 | 20.13 | 18.24 | 22.26 | 4 | SWIR | 2202.4 |
Mean | 24.64 | 20.11 | 17.34 | ||||
PlanetScope | |||||||
Band | 11 September 2021 | 30 October 2021 | 3 November 2021 | Mean | Order | Range | Central wavelength (nm) |
B1 | 16.11 | 9.27 | 14.85 | 13.41 | 6 | Coastal blue | 443 |
B2 | 12.56 | 15.24 | 13.75 | 13.85 | 4 | Blue | 490 |
B3 | 8.13 | 15.02 | 12.23 | 11.79 | 7 | Green I | 531 |
B4 | 15.71 | 11.58 | 13.72 | 13.67 | 5 | Green II | 565 |
B5 | 11.39 | 6.93 | 11.13 | 9.82 | 8 | Yellow | 610 |
B6 | 28.25 | 7.16 | 16.86 | 17.42 | 2 | Red | 665 |
B7 | 17.45 | 18.82 | 8.58 | 14.95 | 3 | Red-edge | 705 |
B8 | 30.49 | 15.58 | 15.73 | 20.60 | 1 | NIR | 865 |
Mean | 17.51 | 12.45 | 13.36 |
RF | OA = 0.97 | |||||||
---|---|---|---|---|---|---|---|---|
forest | mix | goldenrod | crops | water | built-up | PA | F1 | |
forest | 16,865 | 0 | 0 | 0 | 1 | 13 | 1.00 | 0.99 |
mix | 56 | 767 | 28 | 21 | 0 | 78 | 0.81 | 0.85 |
goldenrod | 0 | 16 | 746 | 3 | 0 | 3 | 0.97 | 0.96 |
crops | 79 | 31 | 12 | 13,718 | 0 | 61 | 0.99 | 0.95 |
water | 3 | 0 | 0 | 0 | 18,502 | 0 | 1.00 | 1.00 |
built-up | 171 | 33 | 8 | 1370 | 1 | 11,529 | 0.88 | 0.93 |
UA | 0.98 | 0.91 | 0.94 | 0.91 | 1.00 | 0.99 | ||
SVM | OA = 0.99 | |||||||
forest | mix | goldenrod | crops | water | built-up | PA | F1 | |
forest | 17,018 | 3 | 0 | 22 | 36 | 31 | 0.99 | 0.99 |
mix | 73 | 776 | 37 | 27 | 0 | 59 | 0.80 | 0.85 |
goldenrod | 10 | 17 | 746 | 0 | 0 | 23 | 0.94 | 0.94 |
crops | 57 | 50 | 8 | 14,969 | 0 | 91 | 0.99 | 0.99 |
water | 11 | 0 | 0 | 0 | 18,454 | 45 | 1.00 | 1.00 |
built-up | 5 | 1 | 3 | 94 | 14 | 11,435 | 0.99 | 0.98 |
UA | 0.99 | 0.92 | 0.94 | 0.99 | 1.00 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagajewski, B.; Kluczek, M.; Zdunek, K.B.; Holland, D. Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant Species Mapping. Remote Sens. 2024, 16, 636. https://doi.org/10.3390/rs16040636
Zagajewski B, Kluczek M, Zdunek KB, Holland D. Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant Species Mapping. Remote Sensing. 2024; 16(4):636. https://doi.org/10.3390/rs16040636
Chicago/Turabian StyleZagajewski, Bogdan, Marcin Kluczek, Karolina Barbara Zdunek, and David Holland. 2024. "Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant Species Mapping" Remote Sensing 16, no. 4: 636. https://doi.org/10.3390/rs16040636
APA StyleZagajewski, B., Kluczek, M., Zdunek, K. B., & Holland, D. (2024). Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant Species Mapping. Remote Sensing, 16(4), 636. https://doi.org/10.3390/rs16040636