Mapping Human Pressure for Nature Conservation: A Review
Abstract
:1. Introduction
2. The Framework of Review
2.1. Definition of Human Pressure
2.2. Conceptual Framework
3. Classification of Individual Human Pressure
3.1. Agriculture
3.2. Urban Development
3.3. Livestock Grazing
3.4. Transportation Infrastructure
3.5. Light Pollution
3.6. Mining and Quarrying
3.7. Human Population
4. Methodologies of Comprehensive Human Pressure
4.1. Land Use Intensity Method
- Advantages: The land use intensity method is known for its simple structure and great flexibility. Its simplicity allows researchers and policymakers to apply it easily without needing complex technical tools or extensive expertise. This method’s flexibility lets users adjust intensity parameters to fit specific regional or study needs, making it more applicable for various analyses. This adaptability ensures that the method can be easily integrated into existing decision-making processes, offering a practical tool for various stakeholders in land management and policy planning.
- Disadvantages/limitations: Despite its benefits, the land use intensity method has several limitations. It requires accurate and extensive data collection, which can be resource-intensive and challenging to obtain. The complexity of the method may demand specialized knowledge for implementation and interpretation of results. Additionally, the method may not fully capture rapid or unforeseen changes in land use or intensification patterns. There is also an element of subjectivity in assigning intensity values to different land use types, which may vary by context and affect the consistency of results.
4.2. Human Footprint and Related Methods
4.3. Digital Human Footprint and Related Methods
- Advantages: The method’s ability to leverage large volumes of real-time data means it can provide timely and relevant insights, allowing stakeholders to react quickly to emerging situations. This real-time aspect is crucial for dynamic environments where conditions change rapidly. Additionally, the method enables the analysis of patterns and trends across extensive geographic areas, offering a broad perspective that can be critical for understanding complex phenomena. By integrating diverse data sources, such as social media and mobile applications, the method enhances the robustness and accuracy of the findings, leading to more reliable conclusions and informed decision-making.
- Disadvantages/limitations: Publicly accessible crowdsourced geographic data, such as those from social media or mobile applications, are often limited due to privacy restrictions, data aggregation issues, and sampling biases [111].
4.4. Other Proxies
- Advantages: They provide comprehensive metrics that offer a broader understanding of ecosystem changes over time.
- Disadvantages/limitations: Proxies like NDVI are primarily effective in specific types of ecosystems (forest and grassland) and can be easily influenced by external factors such as cloud cover and land management practices, which may skew results. Concerns about the accuracy and limitations of spatial data can impact the reliability of conclusions drawn from these analyses. Furthermore, the high data requirements and complexity may limit their accessibility and usability for broader applications in conservation planning.
5. Implications for Nature Conservation
5.1. Ecological Monitoring
5.2. Effectiveness Evaluation
5.3. Spatial Identification of Wilderness
5.4. Optimization of Protected Areas
6. Fitness-for-Use Discussion
6.1. Consistency Issues of Human Pressure Data
6.2. Comprehensive Methods of Uncertainty
6.3. Data Validation
6.4. Usage Guideline
- Define the objective and scope: Clearly define the purpose of the dataset. Are you assessing the impact of urbanization, agricultural expansion, pollution, or another type of human pressure on the environment? Specify the geographical area (local, regional, or global) covered by the dataset.
- Evaluate data quality: Understand the methods of data collection, sources, and whether the data are original or aggregated to ensure accuracy and reliability. Check for consistency across datasets, especially if multiple datasets are being integrated for comprehensive analysis.
- Consider temporal and spatial resolution: Ensure the dataset’s temporal and spatial resolution matches the scale of your conservation efforts. Fine-scale data may be needed for local management, while coarser data might suffice for broader regional assessments.
- Assess usability and compatibility: confirm that the data are in a usable format and compatible with the analytical tools you are using.
- Ethical and legal considerations: ensure compliance with ethical standards and legal requirements regarding the use of data, especially digital data if they include sensitive or proprietary information.
7. Future Work
7.1. Advanced Modeling Techniques
7.2. Integration of Remote Sensing and Big Data
7.3. Addressing Data Gaps and Enhancing Accessibility
7.4. Policy Implications and Collaborative Strategies
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kennedy, C.M.; Oakleaf, J.R.; Theobald, D.M.; Baruch-Mordo, S.; Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 2019, 25, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.; Baste, I.; Larigauderie, A.; Leadley, P.; Pascual, U.; Baptiste, B.; Demissew, S.; Dziba, L.; Erpul, G.; Fazel, A. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; pp. 22–47. [Google Scholar]
- Li, S.; Wu, J.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 2018, 621, 18–29. [Google Scholar] [CrossRef]
- Li, H.; Peng, Y.N.; Li, M.Y.; Zhuang, Y.Y.; He, X.Y.; Lin, J.Y. Analyzing spatial patterns and influencing factors of different illegal land use types within ecological spaces: A case study of a fast-growing city. J. Clean. Prod. 2023, 424, 138883. [Google Scholar] [CrossRef]
- Feng, Y.W.; Zhang, W.Z.; Yu, J.H.; Zhuo, R.R. Optimization of land-use pattern based on suitability and trade-offs between land development and protection: A case study of the Hohhot-Baotou-Ordos (HBO) area in Inner Mongolia, China. J. Clean. Prod. 2024, 466, 142796. [Google Scholar] [CrossRef]
- Woolmer, G.; Trombulak, S.C.; Ray, J.C.; Doran, P.J.; Anderson, M.G.; Baldwin, R.F.; Morgan, A.; Sanderson, E.W. Rescaling the Human Footprint: A tool for conservation planning at an ecoregional scale. Landsc. Urban Plan. 2008, 87, 42–53. [Google Scholar] [CrossRef]
- Haines, A.M.; Leu, M.; Svancara, L.K.; Scott, J.M.; Reese, K.P. A theoretical approach to using human footprint data to assess landscape level conservation efforts. Conserv. Lett. 2008, 1, 165–172. [Google Scholar] [CrossRef]
- Di Marco, M.; Venter, O.; Possingham, H.P.; Watson, J.E.M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 2018, 9, 4621. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Riggio, J.; Baillie, J.E.M.; Brumby, S.; Ellis, E.; Kennedy, C.M.; Oakleaf, J.R.; Tait, A.; Tepe, T.; Theobald, D.M.; Venter, O.; et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial ecosystems. Glob. Chang. Biol. 2020, 26, 4344–4356. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.E.M.; Ellis, E.C.; Pillay, R.; Williams, B.A.; Venter, O. Mapping Industrial Influences on Earth’s Ecology. Annu. Rev. Environ. Resour. 2023, 48, 289–317. [Google Scholar] [CrossRef]
- Clarke, C.; Lonsdale, J.A.; Judd, A.; Cormier, R.; Martini, N.; Agius, S.; Cavallaro, K.; Oliver, J.; Van Bloemestein, U.; du Toit, J. Cumulative effect assessment in the marine environment: A focus on the London protocol/London convention. Environ. Sci. Policy 2022, 136, 428–441. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Salafsky, N.; Salzer, D.; Stattersfield, A.J.; Hilton-Taylor, C.; Neugarten, R.; Butchart, S.H.; Collen, B.; Cox, N.; Master, L.L.; O’Connor, S.; et al. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conserv. Biol. 2008, 22, 897–911. [Google Scholar] [CrossRef]
- Margoluis, R.; Salafsky, N. Is Our Project Succeeding? A Guide to Threat Reduction Assessment for Conservation; Biodiversity Support Program: Washington, DC, USA, 2011. [Google Scholar]
- Sala, O.E.; Chapin, F.S., 3rd; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef]
- Vijay, V.; Armsworth, P.R. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2010121118. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/50: The 2012 Revision; UN Food Agriculture Organization (FAO): Rome, Italy, 2012. [Google Scholar]
- Fischer, R.A.; Byerlee, D.; Edmeades, G.L. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World; Australian Centre for International Agricultural Research: Canberra, Australia, 2014; Volume 158, p. 634. [Google Scholar]
- Lobell, D.B.; Baldos, U.L.C.; Hertel, T.W. Climate adaptation as mitigation: The case of agricultural investments. Environ. Res. Lett. 2013, 8, 015012. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Mila, I.C.L.; Eichelberger, B.A.; Ramler, I.; Mueller, C.; et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl. Acad. Sci. USA 2015, 112, 7402–7407. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.Q.; Dong, J.W.; Ellis, E.C.; Metternicht, G.; Qin, Y.W.; Song, X.P.; Lofqvist, S.; Garrett, R.D.; Jia, X.P.; Xiao, X.M. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 2023, 6, 758–768. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Attwood, S.J.; Bawa, K.S.; Benton, T.G.; Broadhurst, L.M.; Didham, R.K.; McIntyre, S.; Perfecto, I.; Samways, M.J.; Tscharntke, T.; et al. To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agric. Ecosyst. Environ. 2013, 173, 20–27. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, Y.; Yu, L.; Liu, X.; Shi, Y.; Liu, X.; Yang, R.; Gong, P. Identifying Potential Cropland Losses When Conserving 30% and 50% Earth with Different Approaches and Spatial Scales. Land 2021, 10, 704. [Google Scholar] [CrossRef]
- Hou, S.Y.; Yang, R.; Cao, Y.; Zhao, Z.C.; Peng, Q.Y.; Wang, H.; Si, Y.L. A framework for identifying bird conservation priority areas in croplands at national level. J. Environ. Manag. 2022, 324, 116330. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Erb, K.H. How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol. Econ. 2012, 76, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Byerlee, D.; Stevenson, J.; Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 2014, 3, 92–98. [Google Scholar] [CrossRef]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Rickman, J.K.; Connor, E.F. The effect of urbanization on the quality of remnant habitats for leaf-mining lepidoptera on Quercus agrifolia. Ecography 2003, 26, 777–787. [Google Scholar] [CrossRef]
- McIntyre, N.E. Ecology of Urban Arthropods: A Review and a Call to Action. Ann. Entomol. Soc. Am. 2000, 93, 825–835. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Forman, R.T.T.; Kareiva, P.; Neugarten, R.; Salzer, D.; Fisher, J. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 2009, 93, 63–75. [Google Scholar] [CrossRef]
- Guneralp, B.; Seto, K.C. Futures of global urban expansion: Uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 2013, 8, 014025. [Google Scholar] [CrossRef]
- Mutuga, F. The Effect of Urbanization on Protected Areas: The Impact of Urban Growth on a Wildlife Protected Area: A Case Study of Nairobi National Park. Master’s Thesis, IIIEE, Lund University, Lund, Sweden, 2009. [Google Scholar]
- van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Asner, G.P.; Elmore, A.J.; Olander, L.P.; Martin, R.E.; Harris, A.T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 2004, 29, 261–299. [Google Scholar] [CrossRef]
- Su, X.K.; Dong, S.K.; Liu, S.L.; Wu, Y.; Zhao, H.D.; Zhang, X.; Weng, J.; Tang, L.; Wu, X.Y.; Hou, P. Changes in rangeland cover associated with livestock grazing in Altun National Nature Reserve, northwest Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 97–105. [Google Scholar] [CrossRef]
- McDonald, S.E.; Reid, N.; Smith, R.; Waters, C.M.; Hunter, J.; Rader, R. Rotational grazing management achieves similar plant diversity outcomes to areas managed for conservation in a semi-arid rangeland. Rangel. J. 2019, 41, 135–145. [Google Scholar] [CrossRef]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed]
- Karanth, K.U.; Gopalaswamy, A.M.; Kumar, N.S.; Vaidyanathan, S.; Nichols, J.D.; MacKenzie, D.I. Monitoring carnivore populations at the landscape scale: Occupancy modelling of tigers from sign surveys. J. Appl. Ecol. 2011, 48, 1048–1056. [Google Scholar] [CrossRef]
- Hua, L.; Li, S.; Gao, D.; Li, W. Uncertainties of Global Historical Land Use Datasets in Pasture Reconstruction for the Tibetan Plateau. Remote Sens. 2022, 14, 3777. [Google Scholar] [CrossRef]
- Soofi, M.; Ghoddousi, A.; Zeppenfeld, T.; Shokri, S.; Soufi, M.; Jafari, A.; Ahmadpour, M.; Qashqaei, A.T.; Egli, L.; Ghadirian, T.; et al. Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian forest, Iran. Biol. Conserv. 2018, 217, 377–382. [Google Scholar] [CrossRef]
- Prowse, T.A.A.; O’Connor, P.J.; Collard, S.J.; Rogers, D.J. Eating away at protected areas: Total grazing pressure is undermining public land conservation. Glob. Ecol. Conserv. 2019, 20, e00754. [Google Scholar] [CrossRef]
- Piana, R.P.; Marsden, S.J. Impacts of cattle grazing on forest structure and raptor distribution within a neotropical protected area. Biodivers. Conserv. 2014, 23, 559–572. [Google Scholar] [CrossRef]
- Butt, B. Coping with Uncertainty and Variability: The Influence of Protected Areas on Pastoral Herding Strategies in East Africa. Hum. Ecol. 2011, 39, 289–307. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zou, X.T.; Chen, J.; Pan, T. Impacts of protected areas establishment on pastoralists’ livelihoods in the Three-River-Source Region on the Qinghai-Tibetan Plateau. Land Use Policy 2022, 115, 106018. [Google Scholar] [CrossRef]
- Li, T.A.; Shilling, F.; Thorne, J.; Li, F.M.; Schott, H.; Boynton, R.; Berry, A.M. Fragmentation of China’s landscape by roads and urban areas. Landsc. Ecol. 2010, 25, 839–853. [Google Scholar] [CrossRef]
- Barber, C.P.; Cochrane, M.A.; Souza, C.M.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Li, S.C.; Su, S.; Liu, Y.X.; Zhou, X.W.; Luo, Q.X.; Paudel, B. Effectiveness of the Qilian Mountain Nature Reserve of China in Reducing Human Impacts. Land 2022, 11, 1071. [Google Scholar] [CrossRef]
- Tan, L.Y.; Guo, G.C.; Li, S.C. The Sanjiangyuan Nature Reserve Is Partially Effective in Mitigating Human Pressures. Land 2022, 11, 43. [Google Scholar] [CrossRef]
- Forman, R.T.T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 2000, 14, 31–35. [Google Scholar] [CrossRef]
- Chen, S.T.; Li, Y.R.; Lu, Z.; Li, R.; Chang, G.Y. Investigating multi-way impacts of transportation on human footprint: Evidence from China. Environ. Impact Asses 2023, 98, 106896. [Google Scholar] [CrossRef]
- Bruschi, D.; Garcia, D.A.; Gugliermetti, F.; Cumo, F. Characterizing the fragmentation level of Italian’s National Parks due to transportation infrastructures. Transp. Res. Part D Transp. Environ. 2015, 36, 18–28. [Google Scholar] [CrossRef]
- Fearnside, P.M. The Roles and Movements of Actors in the Deforestation of Brazilian Amazonia. Ecol. Soc. 2008, 13, 23. [Google Scholar] [CrossRef]
- Laurance, W.F.; Peletier-Jellema, A.; Geenen, B.; Koster, H.; Verweij, P.; Van Dijck, P.; Lovejoy, T.E.; Schleicher, J.; Van Kuijk, M. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 2015, 25, R259–R262. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.Y.; Seto, K.C.; Stokes, E.C.; Deng, C.B.; Pickett, S.T.A.; Taubenbock, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Du, X.; Huang, J.; Su, W.; Hu, T.; Wen, Y.; Yin, P.; Han, Y.; Xue, F. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sens. 2021, 13, 1849. [Google Scholar] [CrossRef]
- Xiang, W.; Tan, M. Changes in Light Pollution and the Causing Factors in China’s Protected Areas, 1992–2012. Remote Sens. 2017, 9, 1026. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, G.; Cao, Z.; Yang, Z.; Marinello, F. Africa’s protected areas are brightening at night: A long-term light pollution monitor based on nighttime light imagery. Glob. Environ. Chang. 2021, 69, 102318. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Yang, C.S.; Zhou, Y.Y.; Yao, S.J.; Qian, X.J.; Wang, C.X.; Wu, B.; Wu, J.P. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Murguia, D.I.; Bringezu, S.; Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. J. Environ. Manag. 2016, 180, 409–420. [Google Scholar] [CrossRef]
- Armendariz-Villegas, E.J.; Covarrubias-Garcia, M.D.; Troyo-Dieguez, E.; Lagunes, E.; Arreola-Lizarraga, A.; Nieto-Garibay, A.; Beltran-Morales, L.F.; Ortega-Rubio, A. Metal mining and natural protected areas in Mexico: Geographic overlaps and environmental implications. Environ. Sci. Policy 2015, 48, 9–19. [Google Scholar] [CrossRef]
- Laurance, W.F.; Goosem, M.; Laurance, S.G. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 2009, 24, 659–669. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Miranda, M.; Burris, P.; Bingcang, J.F.; Shearman, P.; Briones, J.O.; La Vina, A.; Menard, S. Mining and Critical Ecosystems: Mapping the Risks; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Duran, A.P.; Rauch, J.; Gaston, K.J. Global spatial coincidence between protected areas and metal mining activities. Biol. Conserv. 2013, 160, 272–278. [Google Scholar] [CrossRef]
- Kobayashi, H.; Watando, H.; Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 2014, 84, 459–468. [Google Scholar] [CrossRef]
- Wanghe, K.Y.; Guo, X.L.; Hu, F.X.; Ahmad, S.; Jin, X.W.; Khan, T.U.; Xiao, Y.Q.; Luan, X.F. Spatial coincidence between mining activities and protected areas of giant panda habitat: The geographic overlaps and implications for conservation. Biol. Conserv. 2020, 247, 108600. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A. World Population Prospects 2019; UN Department of Economic and Social Affairs Population Dynamics: New York, NY, USA, 2018; Available online: https://population.un.org/wpp/Download/ (accessed on 11 September 2024).
- Forester, D.J.; Machlis, G.E. Modeling human factors that affect the loss of biodiversity. Conserv. Biol. 1996, 10, 1253–1263. [Google Scholar] [CrossRef]
- Wittemyer, G.; Elsen, P.; Bean, W.T.; Burton, A.C.O.; Brashares, J.S. Accelerated human population growth at protected area edges. Science 2008, 321, 123–126. [Google Scholar] [CrossRef]
- Joppa, L.N.; Loarie, S.R.; Pimm, S.L. On population growth near protected areas. PLoS ONE 2009, 4, e4279. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, D.; Larrubia, R.; Sinoga, J.D. Are protected areas good for the human species? Effects of protected areas on rural depopulation in Spain. Sci. Total Environ. 2021, 763, 144399. [Google Scholar] [CrossRef]
- Adams, W.M.; Aveling, R.; Brockington, D.; Dickson, B.; Elliott, J.; Hutton, J.; Roe, D.; Vira, B.; Wolmer, W. Biodiversity conservation and the eradication of poverty. Science 2004, 306, 1146–1149. [Google Scholar] [CrossRef]
- Liu, J.Y. Land Use in the Tibet Autonomous Region; Science Press: Beijing, China, 1992. [Google Scholar]
- Dullinger, I.; Essl, F.; Moser, D.; Erb, K.; Haberl, H.; Dullinger, S. Biodiversity models need to represent land-use intensity more comprehensively. Glob. Ecol. Biogeogr. 2021, 30, 924–932. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Muller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Pouzols, F.M.; Toivonen, T.; Di Minin, E.; Kukkala, A.S.; Kullberg, P.; Kuustera, J.; Lehtomaki, J.; Tenkanen, H.; Verburg, P.H.; Moilanen, A. Global protected area expansion is compromised by projected land-use and parochialism. Nature 2014, 516, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, J.; Kuang, W.; Ouyang, Z.; Xie, Z. Disturbance impacts of land use change on biodiversity conservation priority areas across China: 1990–2010. J. Geogr. Sci. 2015, 25, 515–529. [Google Scholar] [CrossRef]
- Semenchuk, P.; Plutzar, C.; Kastner, T.; Matej, S.; Bidoglio, G.; Erb, K.H.; Essl, F.; Haberl, H.; Wessely, J.; Krausmann, F.; et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.M.J.; Renaud, J.; Dou, Y.; Karger, D.N.; Maiorano, L.; Verburg, P.H.; Thuiller, W. Habitat Suitability of European Land Systems for Terrestrial Vertebrates. Glob. Ecol. Biogeogr. 2024, 33, e13903. [Google Scholar] [CrossRef]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Etter, A.; McAlpine, C.A.; Seabrook, L.; Wilson, K.A. Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biol. Conserv. 2011, 144, 1585–1594. [Google Scholar] [CrossRef]
- Geldmann, J.; Joppa, L.N.; Burgess, N.D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 2014, 28, 1604–1616. [Google Scholar] [CrossRef]
- Jacobson, A.P.; Riggio, J.; Tait, A.M.; Baillie, J.E.M. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 2019, 9, 14179. [Google Scholar] [CrossRef]
- Arnan, X.; Leal, I.R.; Tabarelli, M.; Andrade, J.F.; Barros, M.F.; Camara, T.; Jamelli, D.; Knoechelmann, C.M.; Menezes, T.G.C.; Menezes, A.G.S.; et al. A framework for deriving measures of chronic anthropogenic disturbance: Surrogate, direct, single and multi-metric indices in Brazilian Caatinga. Ecol. Indic. 2018, 94, 274–282. [Google Scholar] [CrossRef]
- Gonzalez-Abraham, C.; Ezcurra, E.; Garcillan, P.P.; Ortega-Rubio, A.; Kolb, M.; Bezaury Creel, J.E. The human footprint in Mexico: Physical geography and historical legacies. PLoS ONE 2015, 10, e0121203. [Google Scholar] [CrossRef]
- Theobald, D.M. Estimating natural landscape changes from 1992 to 2030 in the conterminous US. Landsc. Ecol. 2010, 25, 999–1011. [Google Scholar] [CrossRef]
- Singh, S.P. Chronic disturbance, a principal cause of environmental degradation in developing countries. Environ. Conserv. 1998, 25, 1–2. [Google Scholar] [CrossRef]
- Antongiovanni, M.; Venticinque, E.M.; Matsumoto, M.; Fonseca, C.R. Chronic anthropogenic disturbance on Caatinga dry forest fragments. J. Appl. Ecol. 2020, 57, 2064–2074. [Google Scholar] [CrossRef]
- Correa Ayram, A.C.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol. Indic. 2017, 72, 895–909. [Google Scholar] [CrossRef]
- Tapia-Armijos, M.F.; Homeier, J.; Draper Munt, D. Spatio-temporal analysis of the human footprint in South Ecuador: Influence of human pressure on ecosystems and effectiveness of protected areas. Appl. Geogr. 2017, 78, 22–32. [Google Scholar] [CrossRef]
- Cui, J.F.; Chen, W.W.; Wang, B. Chronic anthropogenic disturbance causes prolific resprouting and dwarfing—A case study of a widely distributed subtropical tree. Glob. Ecol. Conserv. 2024, 54, e03159. [Google Scholar] [CrossRef]
- Ye, C.C.; Wang, S.; Wu, S.L.; Zhou, T.C. Impacts of future permafrost degradation and human modification on terrestrial vertebrates. Biol. Conserv. 2024, 291, 110475. [Google Scholar] [CrossRef]
- Weaver, S.D.; Gahegan, M. Constructing, visualizing, and analyzing a digital footprint. Geogr. Rev. 2007, 97, 324–350. [Google Scholar] [CrossRef]
- Walden-Schreiner, C.; Leung, Y.F.; Tateosian, L. Digital footprints: Incorporating crowdsourced geographic information for protected area management. Appl. Geogr. 2018, 90, 44–54. [Google Scholar] [CrossRef]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M. A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 2017, 31, 139–167. [Google Scholar] [CrossRef]
- Yi, J.; Du, Y.; Liang, F.; Tu, W.; Qi, W.; Ge, Y. Mapping human’s digital footprints on the Tibetan Plateau from multi-source geospatial big data. Sci. Total Environ. 2020, 711, 134540. [Google Scholar] [CrossRef] [PubMed]
- Cessford, G.; Muhar, A. Monitoring options for visitor numbers in national parks and natural areas. J. Nat. Conserv. 2003, 11, 240–250. [Google Scholar] [CrossRef]
- Du, Y.Y.; Tu, W.N.; Liang, F.; Yi, J. Human’s digital footprints on the Qinghai-Tibet Plateau: Variations during festivals and impacts on nature reserves. J. Geogr. Sci. 2021, 31, 179–194. [Google Scholar] [CrossRef]
- Guedes-Santos, J.; Aleixo Correia, R.; Mendes Malhado, A.C.; Ladle, R.J. A digital approach to quantifying political vulnerability of protected areas. Environ. Sci. Policy 2021, 124, 616–626. [Google Scholar] [CrossRef]
- Tu, W.; Yi, J.; Yunyan, D.; Wang, N.; Qian, J.; Huang, S.; Wang, X. A spatiotemporal analysis of human digital footprint and the human activities exposure of grassland biomass in Qinghai Lake National Nature Reserve. Biodivers. Sci. 2022, 30, 21310. [Google Scholar] [CrossRef]
- Tu, W.N.; Du, Y.Y.; Yi, J.W.; Liang, F.Y.; Wang, N.; Qian, J.L.; Huang, S.; Luo, P.X.; Wang, X.Y. Assessment of the dynamic ecological networks on the Qinghai-Tibet Plateau using human’s digital footprints. Ecol. Indic. 2023, 147, 109954. [Google Scholar] [CrossRef]
- Seiferling, I.S.; Proulx, R.; Peres-Neto, P.R.; Fahrig, L.; Messier, C. Measuring protected-area isolation and correlations of isolation with land-use intensity and protection status. Conserv. Biol. 2012, 26, 610–618. [Google Scholar] [CrossRef]
- Haberl, H. Human appropriation of net primary production as an environmental indicator: Implications for sustainable development. Ambio 1997, 26, 143–146. [Google Scholar]
- Vackár, D.; Harmácková, Z.V.; Kanková, H.; Stupková, K. Human transformation of ecosystems: Comparing protected and unprotected areas with natural baselines. Ecol. Indic. 2016, 66, 321–328. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Pan, Y.; Zhang, X.Z.; Wu, J.X.; Yu, C.Q.; Li, M.; Wu, J.S. Patterns and dynamics of the human appropriation of net primary production and its components in Tibet. J. Environ. Manag. 2018, 210, 280–289. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, D.; Ding, Q. Remote Sensing Monitoring for Human Activity of Provincial Nature Reserve. Geospat. Inf. 2019, 17, 68–71. [Google Scholar]
- Guan, X.; Pan, X. Application and analysis of remote sensing monitoring technology in ecological environmental protection of Qilian Mountain National Nature Reserve. South China Agric. 2020, 14, 165–167. [Google Scholar]
- Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P. Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [Google Scholar] [CrossRef]
- Curran, L.M.; Trigg, S.N.; McDonald, A.K.; Astiani, D.; Hardiono, Y.M.; Siregar, P.; Caniago, I.; Kasischke, E. Lowland forest loss in protected areas of Indonesian Borneo. Science 2004, 303, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Su, H.; Pan, J.; Sun, Y.; Zhu, J.; Fang, J.; Tang, Z. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecol. Indic. 2021, 130, 108078. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, X.; Li, J.; Yue, T.; Liu, J.; Sun, X.; Xiang, b.; Kuang, W. Transition Trends of Land-cover in National Nature Reserves of China. Acta Geogr. Sin. 2012, 67, 1623–1633. [Google Scholar]
- Sieber, A.; Kuemmerle, T.; Prishchepov, A.V.; Wendland, K.J.; Baumann, M.; Radeloff, V.C.; Baskin, L.M.; Hostert, P. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 2013, 133, 38–51. [Google Scholar] [CrossRef]
- Joppa, L.; Pfaff, A. Reassessing the forest impacts of protection: The challenge of nonrandom location and a corrective method. Ann. N. Y. Acad. Sci. 2010, 1185, 135–149. [Google Scholar] [CrossRef]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef]
- Casson, S.A.; Martin, V.G.; Watson, A.; Stringer, A.; Kormos, C.F. Wilderness Protected Areas: Management Guidelines for IUCN Category 1b Protected Areas; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Lesslie, R.G.; Taylor, S.G. The Wilderness Continuum Concept and Its Implications for Australian Wilderness Preservation Policy. Biol. Conserv. 1985, 32, 309–333. [Google Scholar] [CrossRef]
- Mccloskey, J.M.; Spalding, H. A Reconnaissance-Level Inventory of the Amount of Wilderness Remaining in the World. Ambio 1989, 18, 221–227. [Google Scholar]
- Carver, S.; Comber, A.; McMorran, R.; Nutter, S. A GIS model for mapping spatial patterns and distribution of wild land in Scotland. Landsc. Urban Plan. 2012, 104, 395–409. [Google Scholar] [CrossRef]
- Carver, S.; Tricker, J.; Landres, P. Keeping it wild: Mapping wilderness character in the United States. J. Environ. Manag. 2013, 131, 239–255. [Google Scholar] [CrossRef]
- Cao, Y.; Carver, S.; Yang, R. Mapping wilderness in China: Comparing and integrating Boolean and WLC approaches. Landsc. Urban Plan. 2019, 192, 103636. [Google Scholar] [CrossRef]
- Aplet, G.; Thomson, J.; Wilbert, M. Indicators of wildness: Using attributes of the land to assess the context of wilderness. USDA Serv. RMRS-P 2000, 2, 89–98. [Google Scholar]
- Carver, S.; Evans, A.J.; Fritz, S. Wilderness attribute mapping in the United Kingdom. Int. J. Wilderness 2002, 8, 24–29. [Google Scholar]
- Ólafsdóttir, R.; Runnström, M.C. How Wild is Iceland? Wilderness Quality with Respect to Nature-based Tourism. Tour. Geogr. 2011, 13, 280–298. [Google Scholar] [CrossRef]
- Lesslie, R.G.; Maslen, M. National Wilderness Inventory Australia; Australia Government Pub. Service: Canberra, Australia, 1995. [Google Scholar]
- Yang, R.; Cao, Y.; Hou, S.; Peng, Q.; Wang, X.; Wang, F.; Tseng, T.H.; Yu, L.; Carver, S.; Convery, I.; et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Sci. Adv. 2020, 6, eabc3436. [Google Scholar] [CrossRef]
- Li, S.C.; Zhang, H.; Zhou, X.W.; Yu, H.B.; Li, W.J. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai Tibet Plateau. Ecosyst. Serv. 2020, 43, 101090. [Google Scholar] [CrossRef]
- Arino, O.; Ramoino, F. Land Cover CCI Product User Guide Version 2.0; UCL-Geomatics: London, UK, 2017. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.G.; Huang, X.M.; Fu, H.H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst Sci Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sens Environ. 2021, 257, 112357. [Google Scholar] [CrossRef]
- Goldewijk, K.K.; Beusen, A.; van Drecht, G.; de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011, 20, 73–86. [Google Scholar] [CrossRef]
- Goldewijk, K.K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 2016, 3, 160067. [Google Scholar] [CrossRef]
- Theobald, D.M.; Kennedy, C.; Chen, B.; Oakleaf, J.; Baruch-Mordo, S.; Kiesecker, J. Earth transformed: Detailed mapping of global human modification from 1990 to 2017. Earth Syst Sci Data 2020, 12, 1953–1972. [Google Scholar] [CrossRef]
- Arias-Patino, M.; Johnson, C.J.; Schuster, R.; Wheate, R.D.; Venter, O. Accuracy, uncertainty, and biases in cumulative pressure mapping. Ecol. Indic. 2024, 166, 112407. [Google Scholar] [CrossRef]
- Xu, P.P.; Tsendbazar, N.E.; Herold, M.; de Bruin, S.; Koopmans, M.; Birch, T.; Carter, S.; Fritz, S.; Lesiv, M.; Mazur, E.; et al. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sens. Environ. 2024, 311, 114316. [Google Scholar] [CrossRef]
- Wiens, J.A.; Seavy, N.E.; Jongsomjit, D. Protected areas in climate space: What will the future bring? Biol. Conserv. 2011, 144, 2119–2125. [Google Scholar] [CrossRef]
- Islam, M.K.; Milas, A.S.; Abeysinghe, T.; Tian, Q. Integrating UAV-Derived Information and WorldView-3 Imagery for Mapping Wetland Plants in the Old Woman Creek Estuary, USA. Remote Sens. 2023, 15, 1090. [Google Scholar] [CrossRef]
- Kacic, P.; Thonfeld, F.; Gessner, U.; Kuenzer, C. Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data. Remote Sens. 2023, 15, 1969. [Google Scholar] [CrossRef]
- Kluczek, M.; Zagajewski, B.; Zwijacz-Kozica, T. Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and Airborne HySpex Hyperspectral Imagery. Remote Sens. 2023, 15, 844. [Google Scholar] [CrossRef]
- Powers, R.P.; Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 2019, 9, 323–329. [Google Scholar] [CrossRef]
- Liu, D.F.; Wang, Z.S.; Qiu, M.L. Response of Regional Habitat Quality to Predicted land Use Change Based on System Coupling Simulation. J. Xinyang Norm. Univ. Nat. Sci. Ed. 2023, 37, 1–8. [Google Scholar]
- Kitchin, R. Big Data and Human Geography. Dialogues Hum. Geogr. 2013, 3, 262. [Google Scholar] [CrossRef]
Term | Definition | Examples |
---|---|---|
Human pressure | Emphasizes the stress exerted by human activities on the environment, culture, or social systems, usually direct and measurable. | Urbanization, agriculture |
Human threat | Emphasizes the potential or actual danger and harm posed by human activities or presence to humans, species, or ecosystems, usually direct and urgent. | Climate change and species invasion |
Human impact/influence | Encompasses various effects of human activities, both positive and negative, associated with the direct outcomes of specific actions. | Reforestation, habitat loss |
Ref. | Year | Study Area | Land Use Intensity Methods | Main Findings |
---|---|---|---|---|
[90] | 2014 | Global PAs | Use the naturalness of land use to assign values. | The effectiveness of worldwide PAs is anticipated to decline by 54% by 2050 in light of the land-use intensity. |
[91] | 2015 | Biodiversity conservation priority areas across China | Construct an Ecosystem Comprehensive Anthropogenic Disturbance Index (ECADI): categorizing land use types into four distinct indexes ranging from 0 to 3 and standardizing. | From 1990 to 2010, ECADI values showed increasing trends in areas designated as moderately important, important, and very important for biodiversity conservation. |
[92] | 2022 | Global | Use HANPP and the land use intensity metric to measure land use intensity. | Two land use intensity sets showed a significant correlation, and land conversion and land use intensity have similar effects on habitat loss. |
[93] | 2024 | Europe | Define the suitability of land use classes as habitats for each species | Land use intensity leads to a significant improvement compared with that only included land cover. |
Methods | Ref. | Description |
---|---|---|
Human footprint (HF) | [12] | Reassign and overlay different categories of spatial human pressure data. |
Anthropogenic biomes/Anthromes | [94] | Analyze human and biological systems together, and integrate potential natural vegetation cover with categories that represent various types of human activity and levels of intensity. |
Spatial human footprint index (SHFI) | [95] | Develop a quantitative spatial human footprint indicator under three dimensions, including land use intensity, intervention time, and biophysical vulnerability of the impacted ecosystems. |
Human modification (HM) | [1] | Distinguish human pressure into intensity and spatial distribution, using “fuzzy algebraic sum” to reduce covariance of individual human pressure and provide a comprehensive index. |
Temporal human pressure index (THPI) | [96] | Only select human pressure data that change with temporal and spatial, then reassign and overlay them. |
Low-impact areas (LIAs) | [97] | Categorize human pressure data and identify low human pressure areas. |
Chronic anthropogenic disturbance (CAD) | [98] | Identify and quantify the main sources of single chronic anthropogenic disturbance (refer to ongoing or long-term human activities) using data with varying precision, categorizing these sources into general disturbance pressures and creating indices for each, then integrating these indices into a comprehensive index. |
Methods | Advantages | Disadvantages |
---|---|---|
Human footprint (HF) | Provide a broad and unified measure of diverse human pressures, facilitating different regions’ comparisons. | Simplify complex ecological interactions and pressures, potentially leading to less precise conclusions. |
Anthropogenic biomes/Anthromes | Capture a wide range of human-environment interactions, highlighting diverse anthropogenic pressures. | Highly complex; requires substantial data, which can be difficult to compile and standardize. |
Spatial human footprint index (SHFI) | Integrate human pressure with ecological vulnerability, offering a comprehensive perspective. | The complexity of the index may restrict its usability in practical assessments and decision-making; lack of intervention time data. |
Human modification (HM) | Consider temporal dynamics, enhancing data relevance and accuracy over time. | Data limitations, particularly regarding high-resolution temporal and spatial variability, may impair its effectiveness. |
Temporal human pressure index (THPI) | Offer nuanced insights by minimizing covariance among different pressure sources, enhancing analysis precision. | High complexity and data demands limit its application and broader adoption. |
Low impact areas (LIAs) | Easy to implement using readily available data, helps biodiversity conservation by identifying regions of low human pressure. | Might miss out on capturing subtle, localized pressures that are not well-represented in existing datasets. |
Chronic anthropogenic disturbance (CAD) | Effectively measure gradual and chronic pressures, adaptable to diverse field conditions and datasets. | It often requires detailed and costly field surveys to gather. |
Ref. | Year | Study Area | Human Footprint and Related Methods | Main Findings |
---|---|---|---|---|
[9] | 2008 | Northern Appalachian/Acadian ecoregion | Mapped the HF at a 90 m resolution using the best available data on human settlement, access, land use change, and electrical power infrastructure. | Correlation between HF scores decreased with smaller compared areas. |
[103] | 2017 | Trans-Mexican Volcanic System in Michoacán (TMVS), Mexico | The SHFI was enhanced by incorporating fragmentation and habitat loss, alongside the original components: land use intensity, duration of human intervention, and biophysical vulnerability. | Over 60% of TMVS shows high SHFI values, reducing habitat connectivity for all species. Human impact on connectivity is especially significant for species with limited dispersal capacity (100–500 m). |
[104] | 2017 | South Ecuador | Mapped HF at 100 m resolution, combining human population density, land transformation, power infrastructure distribution, and human access. | Human pressure has increased, and wild areas has decreased since 1982. Notable “hotspots of changes” were found in western seasonally dry forests and eastern premontane evergreen forests. Different human proxies contributed variably to HF values. |
[105] | 2024 | Northern subtropical forests in China | Calculated a CAD index for each plot based on livestock grazing intensity, wood extraction, and miscellaneous resource use. | CAD was linked to more trees and stem proliferation, and increased resprouting in seedlings, but had no effect on adult forests. |
[106] | 2024 | Qinghai-Tibetan Plateau, China | Current human pressure: using the human modification method and employing six categories (human settlement, agriculture, transportation, energy production and mining, electrical infrastructure, and air pollution). Future human pressure: using the future human population density, built-up areas, cropland, air pollution, and other types of human pressure employed the latest current data. | It is predicted that human modification will threaten half of all plateau’s land vertebrates. |
Ref. | Year | Study Area | Digital Human Footprint and Related Methods | Main Findings |
---|---|---|---|---|
[108] | 2018 | Hawaii Volcanoes National Park (HVNP) | Used geotagged Flickr photos to model temporal and spatial patterns of visitors within HVNP. | Highlighted the potential of social media data to reveal visitation patterns that can inform management strategies for preserving biodiversity and minimizing human impact. |
[112] | 2021 | Qinghai–Tibet Plateau and its PAs | Analyzed Tencent’s location-request data to track digital human footprint trends within PAs. | Revealed distinct U-shaped and N-shaped temporal patterns during major festivals, demonstrating the utility of digital data in capturing fluctuations during significant periods. |
[113] | 2021 | Brazilian PAs | Combined Wikipedia page views with developmental pressure indices to assess the political vulnerability of PAs. | Exemplified how digital data sources can be used to understand human visitation patterns and the socio-political context affecting PAs, capturing complex human-environment interactions. |
[114] | 2022 | Qinghai Lake National Nature Reserve, China | Provided insights into the spatial distribution and intensity of digital human footprints within the reserve. | Offered valuable data for future conservation efforts. |
[115] | 2023 | Qinghai–Tibet Plateau and its PAs | Explored seasonal variation of human activity in PAs. | Showed that these areas experienced significantly higher human pressure in summer compared to winter. |
Ref. | Year | Study Area | Other Proxies Methods | Main Findings |
---|---|---|---|---|
[116] | 2012 | 114 worldwide PAs | Used NDVI to quantify vegetation-cover heterogeneity and as an indicator of land-cover homogeneity. | PAs with low human pressure were more isolated than those with high levels. |
[118] | 2016 | Czech Republic | Created spatial distribution of HANPP as an indicator for human pressure. | HANPP is negatively related to both biodiversity and ecosystem services. |
[119] | 2018 | Tibet, China | Applied clustering analysis to explore county-level dynamics of HANPP components. | Increase in HANPP was mainly driven by the commercialization of animal husbandry and ecological conservation policies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Li, S.; Wang, H.; Cheng, H. Mapping Human Pressure for Nature Conservation: A Review. Remote Sens. 2024, 16, 3866. https://doi.org/10.3390/rs16203866
Luo Q, Li S, Wang H, Cheng H. Mapping Human Pressure for Nature Conservation: A Review. Remote Sensing. 2024; 16(20):3866. https://doi.org/10.3390/rs16203866
Chicago/Turabian StyleLuo, Quanxin, Shicheng Li, Haifang Wang, and Haonan Cheng. 2024. "Mapping Human Pressure for Nature Conservation: A Review" Remote Sensing 16, no. 20: 3866. https://doi.org/10.3390/rs16203866
APA StyleLuo, Q., Li, S., Wang, H., & Cheng, H. (2024). Mapping Human Pressure for Nature Conservation: A Review. Remote Sensing, 16(20), 3866. https://doi.org/10.3390/rs16203866