InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. InSAR Data
3.2. InSAR Methods
4. Results
4.1. PSI Analysis
4.2. QPS-InSAR Analysis
4.3. Comparison between the PSI and QSP-InSAR Approach
4.4. Amplitude Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APS | Atmospheric Phase Screen |
ASI | Amplitude Stability Index |
DEM | Digital Elevation Model |
GCP | Ground Control Point |
InSAR | Interferometric Synthetic Aperture Radar |
IW | Interferometric Wide Swath |
LOS | Line-of Sight |
MT-InSAR | Multi-Temporal InSAR |
PS | Persistent Scatterer |
PSI | Persistent Scatterer Interferometry |
QPS-InSAR | Quasi-PS InSAR |
SAR | Synthetic Aperture Radar |
SBAS | Small Baseline Subsets |
SLC | Single Look Complex |
References
- Solari, L.; Montalti, R.; Barra, A.; Monserrat, O.; Bianchini, S.; Crosetto, M. Multi-temporal satellite interferometry for fast-motion detection: An application to salt solution mining. Remote Sens. 2020, 12, 3919. [Google Scholar] [CrossRef]
- Florencio, C.P. Geologia dos Evaporitos Paripueira na Sub-Bacia de Maceió, Alagoas Região do Brasil. Ph.D. Thesis, Universidae de São Paulo—Insituto de geociêNcias, São Paulo, Brazil, 2001. [Google Scholar]
- Zhang, G.; Wang, Z.; Zhang, K.; Li, Y.; Yu, W.; Chen, Y.; Zhang, H. Collapse mechanism of the overlying strata above a salt cavern by solution mining with double-well convection. Environ. Earth Sci. 2018, 77, 588. [Google Scholar] [CrossRef]
- Liu, W.; Bingwu, W.; Yinping, L.; Yl, W.; Chunhe, Y.; Jie, C. The collapse mechanism of water solution salt mine caverns and the comprehensive measures of protection, treatment and application. Int. J. Earth Sci. Eng. 2014, 7, 1295–1304. [Google Scholar]
- Zhang, G.; Wang, Z.; Wang, L.; Chen, Y.; Yu, W.; Ma, D.; Zhang, K. Mechanism of collapse sinkholes induced by solution mining of salt formations and measures for prediction and prevention. Bull. Eng. Geol. Environ. 2017, 78, 1401–1415. [Google Scholar] [CrossRef]
- Andrei, A. The Ocnele Mari salt mine collapsing sinkhole—A NATECH breakdown in the Romanian sub-carpathians. Carpathian J. Earth Environ. Sci. 2011, 6, 215–220. [Google Scholar]
- Contrucci, I.; Klein, E.; Cao, N.; Daupley, X.; Bigarré, P. Multi-parameter monitoring of a solution mining cavern collapse: First insight of precursors. Comptes Rendus. Géosci. 2011, 343, 1–10. [Google Scholar] [CrossRef]
- Serviço Geológico do Brasil—CPRM. Estudos Sobre a Instabilidade do Terreno nos Bairros Pinheiro, Mutange e Bebedouro, Maceió (AL)—Relatório Síntese dos Resultados nº1; Technical Report; Ministério de Minas e Energia, Secretaria de Geologia, Mineração e Transformação Mineral: Brasília, Brazil, 2019.
- Euillades, P.A.; Euillades, L.; Rosell, P.; Roa, Y.L.B. Subsidence in Maceio, Brazil, characterized by dinsar and inverse modeling. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020. [Google Scholar] [CrossRef]
- Vassileva, M.; Al-Halbouni, D.; Motagh, M.; Walter, T.R.; Dahm, T.; Wetzel, H. A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió, Brazil. Sci. Rep. 2021, 11, 7704. [Google Scholar] [CrossRef]
- Alves, S.D.C.; Krueger, C.P.; Dalazoana, R.; Polidori, L. Employment of free packages for mt-insar approaches to verify the subsidence event over Maceió City, Brazil. Anuário Inst. GeociêNcias 2023, 46, 56709. [Google Scholar] [CrossRef]
- Hartwig, M.E.; Gama, F.F.; da Silva, J.L.; Jofré, G.C.; Mura, J.C. The significance of geological structures on the subsidence phenomenon at the maceió salt dissolution field (Brazil). Acta Geotech. 2023, 18, 5551–5573. [Google Scholar] [CrossRef]
- Taylor, K.; Ghuman, P.; McCardle, A. Operational mine monitoring with insar. In Proceedings of the First Asia Pacific Slope Stability in Mining Conference, Perth, Australia, 6–8 September 2016. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Czikhardt, R.; Papco, J.; Bakon, M.; Liscak, P.; Ondrejka, P.; Zlocha, M. Ground Stability Monitoring of Undermined and Landslide Prone Areas by Means of Sentinel-1 Multi-Temporal InSAR, Case Study from Slovakia. Geosciences 2017, 7, 87. [Google Scholar] [CrossRef]
- Lü, Z.; Zhang, J.; Zhang, Y.; Dzurisin, D. Monitoring and characterizing natural hazards with satellite insar imagery. Ann. GIS 2010, 16, 55–66. [Google Scholar] [CrossRef]
- Liu, J.; Ma, F.; Li, G.; Guo, J.; Yang, W.L.; Song, Y. Evolution assessment of mining subsidence characteristics using sbas and ps interferometry in sanshandao gold mine, china. Remote Sens. 2022, 14, 290. [Google Scholar] [CrossRef]
- Pukanska, K.; Bartos, K.; Bakon, M.; Papco, J.; Kubica, L.; Barlak, J.; Rovnak, M.; Ksenak, L.; Zelenakova, M.; Savchyn, I.; et al. Multi-sensor and multi-temporal approach in monitoring of deformation zone with permanent monitoring solution and management of environmental changes: A case study of solotvyno salt mine, Ukraine. Front. Earth Sci. 2023, 11, 1167672. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A.; Görüm, T. Tracking deformation velocity via psi and sbas as a sign of landslide failure: An open-pit mine-induced landslide in himmetoğlu (Bolu, Nw Turkey). Nat. Hazards 2024, 120, 7701–7724. [Google Scholar] [CrossRef]
- Molan, Y.E.; Lohman, R.B.; Pritchard, M.E. Ground displacements in ny using persistent scatterer interferometric synthetic aperture radar and comparison of x- and c-band data. Remote Sens. 2023, 15, 1815. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Wang, W.; Chen, B.; Sun, X. Monitoring mining activities using sentinel-1a insar coherence in open-pit coal mines. Remote Sens. 2021, 13, 4485. [Google Scholar] [CrossRef]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonet, D. InSAR Principles—Guidelines for SAR Interferometry Processing and Interpretation. ESA Train. Man. 2007, 19. [Google Scholar]
- Hooper, A.; Segall, P.; Zebker, H.A. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to volcán alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Lohman, R.B. Characterizing and estimating noise in insar and insar time series with modis. Geochem. Geophys. Geosyst. 2013, 14, 4121–4132. [Google Scholar] [CrossRef]
- Sousa, J.J.; Hooper, A.; Hanssen, R.F.; Bastos, L.; Ruiz, A.M. Persistent scatterer insar: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. Environ. 2011, 115, 2652–2663. [Google Scholar] [CrossRef]
- Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Costantini, E.; Falco, S.D.; Malvarosa, F.; Minati, F.; Trillo, F. Method of persistent scatterer pairs (psp) and high resolution sar interferometry. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar] [CrossRef]
- Kuhlmann, L.; Chiba, B.; Moreira, D.; Jesus, D.; Moraes, J.; Maia, M.; Pfaltzgraff, P. Estudos Sobre a Instabilidade do Terreno nos Bairros Pinheiro, Mutange e Bebedouro, Maceió (AL)—Relatório Técnico: B. Leavantamento Interferométrico; Technical Report; Ministério de Minas e Energia, Secretaria de Geologia, Mineração e Transformação Mineral: Rio de Janeiro, Brazil, 2019.
- Serviço Geológico do Brasil—CPRM. Geologia, tectôNica e Recursos Minerais do Brasil: Texto, Mapas e SIG; Ministério de Minas e Energia—Secretaria de Minas e Metalurgia: Brasília, Brazil, 2003.
- Carneiro, C. Sal: Geologia e Tectônica. Exemplos nas Bacias Brasileiras. Terrae Didat. 2015, 4, 90. [Google Scholar] [CrossRef]
- Milani, E.; Araújo, L. Recursos Minerais Energéticos: Petróleo; Ministério de Minas e Energia—Secretaria de Minas e Metalurgia: Rio de Janeiro, Brazil, 2003.
- Freitas, V.; Silveira, R. Bacia de Sergipe-Alagoas—Terra; Technical report; Superintendência de Definição de Blocos: Rio de Janeiro, Brazil, 2017.
- Mendes, V.; Lima, M.; Morais, D.; Brito, M. Geologia e Recursos Minerais do Estado de Alagoas; Technical report; Ministério de Minas e Energia—Secretaria de Minas e Metalurgia: Recife, Brazil, 2017.
- Xing, X.; Zhang, T.; Zhu, J.; Shi, J.; Cai, J.; Zheng, G.; Lei, M. Quantitative prediction for deformation and brine extraction in salt solution mining based on water-solution kinetic (wsk) insar model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7655–7673. [Google Scholar] [CrossRef]
- Martinez, J.P.; Johnson, K.M.; Neal, J. Sinkholes in evaporite rocks. Am. Sci. 1998, 86, 38. [Google Scholar] [CrossRef]
- Metwally, H.; Salman, S.; El-Shamy, A. A review on extraction processes of salts from different salt lakes and their environmental impact in industry. Lett. Appl. NanoBioSci. 2021, 11, 4016–4039. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-Pass SAR Interferometry With Partially Coherent Targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
- Perissin, D. SARproZ Software. Official Product Web Page. 2024. Available online: http://www.sarproz.com/ (accessed on 10 July 2024).
- Bakoň, M.; Papčo, J.; Perissin, D.; Sousa, J.J.; Lázecký, M. Multi-sensor insar deformation monitoring over urban area of Bratislava (Slovakia). Procedia Comput. Sci. 2016, 100, 1127–1134. [Google Scholar] [CrossRef]
- Dang, V.K.; Nguyen, T.D.; Dao, N.H.; Duong, T.L.; Dinh, X.V.; Weber, C. Land subsidence induced by underground coal mining at quang ninh, vietnam: Persistent scatterer interferometric synthetic aperture radar observation using sentinel-1 data. Int. J. Remote Sens. 2021, 42, 3563–3582. [Google Scholar] [CrossRef]
- Perissin, D. Interferometric sar multitemporal processing: Techniques and applications. Remote Sens. Digit. Image Process. 2016, 20, 145–176. [Google Scholar] [CrossRef]
- Wegmuller, U.; Walter, D.; Spreckels, V. Nonuniform Ground Motion Monitoring With TerraSAR-X Persistent Scatterer Interferometry. IEEE Trans. Geosci. Remote Sens. 2010, 48, 895–904. [Google Scholar] [CrossRef]
- Gao, M.; Gong, H.; Li, X.; Chen, B.; Zhou, C.; Shi, M.; Lin, G.; Chen, Z.; Ni, Z.; Duan, G. Land subsidence and ground fissures in beijing capital international airport (bcia): Evidence from quasi-ps insar analysis. Remote Sens. 2019, 11, 1466. [Google Scholar] [CrossRef]
- Esfahany, S.S. Exploitation of Distributed Scatterers in Synthetic Aperture Radar Interferometry. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2017. [Google Scholar]
- Tao, L.; Zhang, H.; Wang, C.; Tang, Y. Ground Deformation Retrieval Using Quasi Coherent Targets DInSAR, With Application to Suburban Area of Tianjin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 867–873. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Time-Series InSAR Applications Over Urban Areas in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 92–100. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.; Kim, S.; Won, J.; Moon, W.M. Monitoring of Urban land surface subsidence using PSInSAR. Geosci. J. 2007, 11, 59–73. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Casu, F.; Manconi, A.; Pepe, A.; Lanari, R. Deformation Time-Series Generation in Areas Characterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2752–2763. [Google Scholar] [CrossRef]
- Ling, L.; Perissin, D.; Qin, Y. Change detection with spaceborne insar technique in Hong Kong. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013. [Google Scholar] [CrossRef]
- Lê, T.T.; Froger, J.; Baghdadi, N.; Minh, D.H.T. Volcanic eruption monitoring using coherence change detection matrix. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar] [CrossRef]
- Lê, T.T.; Froger, J.; Hrysiewicz, A.; Paris, R. Coherence change analysis for multipass insar images based on the change detection matrix. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, A.C.; Bakon, M.; Perissin, D.; Sousa, J.J. InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió. Remote Sens. 2024, 16, 3806. https://doi.org/10.3390/rs16203806
Teixeira AC, Bakon M, Perissin D, Sousa JJ. InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió. Remote Sensing. 2024; 16(20):3806. https://doi.org/10.3390/rs16203806
Chicago/Turabian StyleTeixeira, Ana Cláudia, Matus Bakon, Daniele Perissin, and Joaquim J. Sousa. 2024. "InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió" Remote Sensing 16, no. 20: 3806. https://doi.org/10.3390/rs16203806
APA StyleTeixeira, A. C., Bakon, M., Perissin, D., & Sousa, J. J. (2024). InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió. Remote Sensing, 16(20), 3806. https://doi.org/10.3390/rs16203806