Evaluation of the Spatial Distribution of Predictors of Fire Regimes in China from 2003 to 2016
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Processing Method
2.2.1. Extraction of Forest Fire Predictive Factors
2.2.2. Extraction of Forest Fire Parameters
2.2.3. Fire Models
3. Results and Discussion
3.1. Validation of Fire Data
3.2. Predictors of Disturbance by Forest Fire
3.2.1. Predictors of Forest Fire Occurrence Density
3.2.2. Predictors of Burned Rate
3.2.3. Predictors of Median Fire Size
3.3. Comparison to Previous Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y. Changes in Carbon Storage, Plant Diversity and Community Structure of Forests in Daxing’an Mts under Different Fire Rehabilitation Years. Master’s Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Girardin, M.P.; Ali, A.A.; Carcaillet, C.; Blarquez, O.; Hely, C.; Terrier, A.; Genries, A.; Bergeron, Y. Vegetation limits the impact of a warm climate on boreal wildfires. New Phytol. 2013, 199, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Tang, R.Y.; Mao, J.F.; Yue, C.; Li, X.R.; Gao, M.D.; Shi, X.Y.; Jin, M.Z.; Ricciuto, D.; Rabin, S.; et al. Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades. Geogr. Sustain. 2020, 1, 47–58. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef] [PubMed]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; Werf, G.R.V.; Kasibhatla, P.S.; Defries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; p. 755. [Google Scholar] [CrossRef]
- Burgan, R.; Klaver, R.; Klaver, J. Fuel Models and Fire Potential from Satellite and Surface Observations. Int. J. Wildland Fire 1998, 8, 159–170. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; Groot, W.J.D.; Wotton, J.D.G.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Xu, X.Y.; Jia, G.S.; Zhang, X.Y.; Riley, W.J.; Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian forests. Global Change Biol. 2020, 26, 5874–5885. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Zhang, H.L. Effects of El Nino on forest fires in Northeast China. For. Fire Prev. 2012, 2, 35–38. [Google Scholar]
- Ren, J.X.; Xiao, H.J.; Zhang, C. Reviewing on Effects of Continuous Drought on Forest Fire. Inn. Mong. For. Investig. Des. 2013, 140–143. [Google Scholar]
- Hurteau, M.D.; Westerling, A.L.; Wiedinmyer, C.; Bryant, B.P. Projected Effects of Climate and Development on California Wildfire Emissions through 2100. Environ. Sci. Technol. 2014, 48, 140203132416003. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.M.; Soja, A.J.; Goulden, M.L.; Randerson, J.T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 2015, 8, 228–234. [Google Scholar] [CrossRef]
- Su, Z.W.; Tigabu, M.; Cao, Q.Q.; Wang, G.Y.; Hu, H.Q.; Guo, F.T. Comparative analysis of spatial variation in forest fire drivers between boreal and subtropical ecosystems in China. For. Ecol. Manag. 2019, 454, 117669. [Google Scholar] [CrossRef]
- Wu, Z.W.; He, H.S.; Keane, R.E.; Zhu, Z.L.; Wang, Y.Q.; Shan, Y.L. Current and future patterns of forest fire occurrence in China. Int. J. Wildland Fire 2020, 29, 104–119. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yang, J.; He, H.S.; Chang, Y. Spatial point analysis of fire occurrence and its influence factor in Huzhong forest area of the Great Xing′an Mountains in Heilongjiang Province, China. Acta Ecol. Sin. 2011, 31, 1669–1677. [Google Scholar]
- Ke, H.B.; Gong, S.L.; He, J.J.; Zhou, C.H.; Zhang, L.; Zhou, Y.K. Spatial and temporal distribution of open bio-mass burning in China from 2013 to 2017. Atmos. Environ. 2019, 210, 156–165. [Google Scholar] [CrossRef]
- Fu, J.J.; Wu, Z.W.; Yan, S.J.; Zhang, Y.J.; Gu, X.L.; Du, L.H. Effects of climate, vegetation, and topography on spatial patterns of burn severity in the Great Xing’an Mountains. Acta Ecol. Sin. 2020, 40, 1672–1682. [Google Scholar]
- Liu, Z.H.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Chao, H.; He, H.S.; Yu, L.; Wu, Z.W.; Hawbaker, T.J.; Gong, P.; Zhu, Z.L. Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China. Ann. Sci. 2018, 75, 42. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Lan, Z.G.; Su, Z.W.; Guo, M.; Alvarado, E.C.; Guo, F.T.; Hu, H.Q.; Wang, G.Y. Are Climate Factors Driving the Contemporary Wildfire Occurrence in China? Forests 2021, 12, 392. [Google Scholar] [CrossRef]
- Wang, X.X.; Di, Z.H.; Li, M.; Yao, Y.J. Satellite-Derived Variation in Burned Area in China from 2001 to 2018 and Its Response to Climatic Factors. Remote Sens. 2021, 13, 1287. [Google Scholar] [CrossRef]
- Liu, Z.; Jian, Y. Quantifying ecological drivers of ecosystem productivity of the early-successional boreal Larix gmelinii forest. Ecosphere 2014, 5, 84. [Google Scholar] [CrossRef]
- Cooper, L.A.; Ballantyne, A.P.; Holden, Z.A.; Landguth, E.L. Disturbance impacts on land surface temperature and gross primary productivity in the western United States. J. Geophys. Res. Biogeosciences 2017, 122, 930–946. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab—An S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef]
- Alexandros, K.; Smola, A.; Hornik, K. Kernlab: Kernel-Based Machine Learning Lab. 2018. Available online: https://CRAN.R-project.org/package=kernlab (accessed on 31 January 2023).
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Higuera, P.E.; Duffy, P.A.; Hu, F.S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 2016, 40, 606–617. [Google Scholar] [CrossRef]
- Liu, Z. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China. Sci. Rep. 2016, 6, 37572. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wimberly, M.C. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States. PLoS ONE 2015, 10, e0140839. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ying, L.X.; Han, J.; Du, Y.S.; Shen, Z.H. Forest fire characteristics in China: Spatial patterns and determinants with thresholds. For. Ecol. Manag. 2018, 424, 345–354. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, L.; Jin, S.; Tigabu, M.; Su, Z.; Wang, W. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests. Forests 2016, 7, 250. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Koontz, M.J.; Collins, L.; Whitman, E.; Parisien, M.A.; Loehman, R.A.; Barnes, J.L.; Bourdon, J.F.; Boucher, J.; et al. Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Mustafa, A.; Rienow, A.; Saadi, I.; Cools, M.; Teller, J. Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. Eur. J. Remote Sens. 2018, 51, 391–401. [Google Scholar] [CrossRef]
- Eskandari, S.; Pourghasemi, H.R.; Tiefenbacher, J.P. Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. For. Ecol. Manag. 2020, 473, 118338. [Google Scholar] [CrossRef]
- Greenwell, B.M.; Boehmke, B.C.; Mccarthy, A.J. A Simple and Effective Model-Based Variable Importance Measure. arXiv 2018, arXiv:2018:1805.04755. [Google Scholar]
- Potter, S.; Solvik, K.; Erb, A.; Goetz, S.J.; Johnstone, J.F.; Mack, M.C.; Randerson, J.T.; Roman, M.O.; Schaaf, C.L.; Turetsky, M.R.; et al. Climate change decreases the cooling effect from postfire albedo in boreal North America. Global Change Biol. 2020, 26, 1592–1607. [Google Scholar] [CrossRef]
- Greenwell, B. pdp: Partial Dependence Plots. R J. 2017, 9, 421–436. Available online: https://journal.r-project.org/archive/2017/RJ-2017-016/index.html (accessed on 19 October 2021). [CrossRef]
- Liu, Z.; Yang, J.; He, H.S. Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China. PLoS ONE 2013, 8, e55618. [Google Scholar] [CrossRef]
- Hantson, S.; Lasslop, G.; Kloster, S.; Chuvieco, E. Anthropogenic effects on global mean fire size. Int. J. Wildland Fire 2015, 5, 589–596. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; Ayanz, J.S.M.; Fournel, M.L.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef]
- Hu, T.; Zhou, G.S. Drivers of lightning- and human-caused fire regimes in the Great Xing’an Mountains. For. Ecol. Manag. 2014, 329, 49–58. [Google Scholar] [CrossRef]
- Chang, Y.; He, H.S.; Bishop, I.; Hu, Y.M.; Bu, R.C.; XU, C.G.; Li, X.Z. Long-term forest landscape responses to fire exclusion in the Great Xing’an Mountains, China. Int. J. Wildland Fire 2007, 16, 34–44. [Google Scholar] [CrossRef]
- Jiao, L.L.; Chang, Y.; Shen, D.; Hu, Y.M.; Li, C.L.; Ma, J. Using boosted regression trees to analyze the factors affecting the spatial distribution pattern of wildfire in China. Chin. J. Ecol. 2015, 34, 2288–2296. [Google Scholar]
- Guo, F.T.; Su, Z.W.; Wang, G.Y.; Sun, L.; Tigabu, M.; Yang, X.J.; Hu, H.Q. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Sci. Total Environ. 2017, 605, 411–425. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate–fire relationships. Global Change Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef]
- Li, D.-H. A study of class division of meteorological forest fire risk at Xishuangbanna. J. Yunnan Univ. (Nat. Sci. Ed.) 2011, 33, 49–54. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; Werf, G.R.V.D.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth Syst. Sci. Data 2018, 11, 529–552. [Google Scholar] [CrossRef]
- Zubkova, M.; Boschetti, L.; Abatzoglou, J.T.; Giglio, L. Changes in Fire Activity in Africa from 2002 to 2016 and Their Potential Drivers. Geophys. Res. Lett. 2019, 46, 7643–7653. [Google Scholar] [CrossRef]
- Jiao, L.L.; Chang, Y.; Hu, Y.M.; Wang, X.L. Spatial and temporal distribution patterns of wildfires in China based on MODIS data. Chin. J. Ecol. 2014, 33, 1351–1358. [Google Scholar]
Variable Group | Variables | Abbreviation | Resolution | Units |
---|---|---|---|---|
Climate 1 | Annual Palmer Drought Severity Index (PDSI) | PDSIAnn | Monthly temporal and 4 km spatial | Index (−4–+4) |
Mean PDSI in spring, summer, fall, and winter | PDSISpr, PDSISum, PDSIFal, PDSIWin | |||
Annual precipitation accumulation (PPT) | PptAnn | mm | ||
Mean PPT in spring, summer, fall, and winter | PptSpr, PptSum, PptFal, PptWin | |||
Annual soil moisture | SoilAnn | m3/m3 | ||
Mean soil moisture in spring, summer, fall, and winter | SoilSpr, SoilSum, SoilFal, SoilWin | |||
Annual temperature (average of maximum and minimum temperatures) | TmeanAnn | °C | ||
Mean temperature in spring, summer, fall, and winter | TmeanSpr, TmeanSum, TmeanFal, TmeanWin | |||
Anthropogenic | Population density 2 | PopDen | 30 arc-seconds (year 2010) | Persons/km2 |
Road density 3 | RdDen | 5 arc-min | m/km2 | |
Distance to nearest road 3 | Dist2Rd | 1 km | km | |
Topography 4 | Digital elevation model | Dem | 1 km | m |
Slope | Slope | ° | ||
Potential solar radiation | Rad | Index (0–1) | ||
Vegetation 5 | Annual integrated Normalized Difference Vegetation Index (NDVI) | ndvi_ANN | Monthly temporal and 0.05° spatial | Index (0–1) |
Mean NDVI in spring, summer, fall, winter | ndvi_spr, ndvi_sum, ndvi_fal, ndvi_Win | |||
Percent evergreen needleleaf forests, percent evergreen broadleaf forests, percent deciduous needleleaf forests, percent deciduous broadleaf forests, percent mixed forests | PctLC1, PctLC2, PctLC3, PctLC4, PctLC5 | % | ||
Percent forests | PctLC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Liu, Z.; Wang, W.; Jiao, K.; Yu, Y.; Li, K.; Lü, Q.; Fletcher, T.L. Evaluation of the Spatial Distribution of Predictors of Fire Regimes in China from 2003 to 2016. Remote Sens. 2023, 15, 4946. https://doi.org/10.3390/rs15204946
Su J, Liu Z, Wang W, Jiao K, Yu Y, Li K, Lü Q, Fletcher TL. Evaluation of the Spatial Distribution of Predictors of Fire Regimes in China from 2003 to 2016. Remote Sensing. 2023; 15(20):4946. https://doi.org/10.3390/rs15204946
Chicago/Turabian StyleSu, Jiajia, Zhihua Liu, Wenjuan Wang, Kewei Jiao, Yue Yu, Kaili Li, Qiushuang Lü, and Tamara L. Fletcher. 2023. "Evaluation of the Spatial Distribution of Predictors of Fire Regimes in China from 2003 to 2016" Remote Sensing 15, no. 20: 4946. https://doi.org/10.3390/rs15204946
APA StyleSu, J., Liu, Z., Wang, W., Jiao, K., Yu, Y., Li, K., Lü, Q., & Fletcher, T. L. (2023). Evaluation of the Spatial Distribution of Predictors of Fire Regimes in China from 2003 to 2016. Remote Sensing, 15(20), 4946. https://doi.org/10.3390/rs15204946