SNOWTRAN: A Fast Radiative Transfer Model for Polar Hyperspectral Remote Sensing Applications
Abstract
:1. Introduction
2. The Analytical Representation of the Top-of-Atmosphere Reflectance over Snow
2.1. The Radiative Transfer in a Snow Layer
2.2. The Atmospheric Radiative Transfer
3. The Comparison of Theoretical Calculations with Satellite Measurements
4. The Determination of the Snow Grain Size
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
j/n. | 0 | 1 | 2 |
---|---|---|---|
0 | 0.01388 | 0.45760 | −0.02527 |
1 | −0.07413 | 1.65240 | 0.16899 |
2 | 0.05855 | −2.78192 | 0.89927 |
3 | −0.01099 | 1.18977 | −0.41984 |
References
- Stamnes, K.; Hamre, B.; Stamnes, S.; Chen, N.; Fan, Y.; Li, W.; Lin, Z.; Stamnes, J. Progress in forward-inverse modeling based on radiative transfer tools for coupled atmosphere-snow/ice-ocean systems: A review and description of the AccuRT model. Appl. Sci. 2018, 8, 2682. [Google Scholar] [CrossRef]
- Mei, L.; Rozanov, V.; Rozanov, A.; Burrows, J.P. SCIATRAN software package (V4.6): Update and further development of aerosol, clouds, surface reflectance databases and models. Geosci. Model Dev. 2023, 16, 1511–1536. [Google Scholar] [CrossRef]
- Nakajima, T.Y.; Murakami, H.; Hori, M.; Nakajima, T.; Aoki, T.; Oishi, T.; Tanaka, A. Efficient use of an improved radiative transfer code to simulate near-global distributions of satellite-measured radiances. Appl. Opt. 2003, 42, 3460–3471. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Spurr, R.; Christi, M. The LIDORT and VLIDORT linearized scalar and vector discrete ordinate radiative transfer models. In Springer Series in Light Scattering; Kokhanovsky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–62. [Google Scholar]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- Cachorro, V.E.; Antuña-Sanchez, J.C.; de Frutos, A.M. SSolar-GOA v1.0: A simple, fast, and accurate Spectral solar radiative transfer for clear skies. Geosci. Model Dev. 2022, 15, 1689–1712. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Storch, T.; Honold, H.-P.; Chabrillat, S.; Habermeyer, M.; Tucker, P.; Brell, M.; Ohndorf, A.; Wirth, K.; Betz, M.; Kuchler, M.; et al. The EnMAP imaging spectroscopy mission towards operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
- Rast, M.; Nieke, J.; Adams, J.; Isola, C.; Gascon, F. Copernicus Hyperspectral Imaging Mission for the Environment (Chime). In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 108–111. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Sobolev, V.V. Light Scattering in Planetary Atmospheres; Nauka: Moscow, Russia, 1975. [Google Scholar]
- Van de Hulst, H.C. The spherical albedo of a planet covered with a homogeneous cloud layer. Astron. Astrophys. 1974, 35, 209–214. [Google Scholar]
- Van de Hulst, H.C. Multiple Light Scattering, v.1, 2; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Kokhanovsky, A. The approximate analytical solution for the top-of-atmosphere spectral reflectance of atmosphere—Underlying snow system over Antarctica. Remote Sens. 2022, 14, 4778. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Snow Optics; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Kokhanovsky, A.; Macke, A. Integral light-scattering and absorption characteristics of large nonspherical particles. Appl. Opt. 1997, 36, 8785–8790. [Google Scholar] [CrossRef]
- Macke, A.; Müller, J.; Raschke, E. Single scattering properties of atmospheric ice crystals. J. Atmos. Sci. 1996, 53, 2813–2825. [Google Scholar] [CrossRef]
- Shifrin, K.S. Light Scattering in a Turbid Medium; Gostekhteorizdat; Nauka: Leningrad, Russia, 1951. [Google Scholar]
- Van de Hulst, H.C. Light Scattering by Small Particles; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Warren, S.; Brand, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. 2008, 113, D14. [Google Scholar] [CrossRef]
- Green, A.E.; Wagner, J.C.; Mann, A. Analytic spectral functions for atmospheric transmittance calculations. Appl. Opt. 1988, 27, 2266–2272. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C. The EnMAP spaceborne imaging spectroscopy mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Fontenla, J.N.; Harder, J.; Livingston, W.; Snow, M.; Woods, T. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. Atmos. 2011, 116, D20. [Google Scholar] [CrossRef]
- Kurucz, R.L. New atlases for solar flux, irradiance, central intensity, and limb intensity. Mem. Della Soc. Astron. Ital. Suppl. 2005, 8, 189. [Google Scholar]
- Kokhanovsky, A.A.; Brell, M.; Segl, K.; Bianchini, G.; Lanconelli, C.; Lupi, A.; Petkov, B.; Picard, G.; Arnaud, L.; Stone, R.S.; et al. First retrievals of surface and atmospheric properties using EnMAP measurements over Antarctica. Remote Sens. 2023, 15, 3042. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Stamnes, K. Effects of vertical inhomogeneity on snow spectral albedo and its implication for optical remote sensing of snow. J. Geophys. Res. 2003, 108, 4738. [Google Scholar] [CrossRef]
- Saito, M.; Yang, P.; Loeb, N.G.; Kato, S. A novel parameterization of snow albedo based on a two-layer snow model with a mixture of grain habits. J. Atmos. Sci. 2019, 76, 1419–1436. [Google Scholar] [CrossRef]
- Gay, M.; Fily, M.; Genthon, C.; Frezzotti, M.; Oerter, H.; Winther, J.-G. Snow grain size measurements in Antarctica. J. Glaciol. 2002, 48, 527–535. [Google Scholar] [CrossRef]
- Bianchini, G.; Belotti, C.; Di Natale, G.; Palchetti, L. Exploiting a decadal time-series of spectrally resolved downwelling infrared radiances at Dome C, Antarctica to assess the occurrence of advective warming events. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-1528. [Google Scholar] [CrossRef]
- Six, D.; Fily, M.; Blarel, L.; Goloub, P. First aerosol optical thickness measurements at Dome C (East Antarctica), summer season 2003–2004. Atmos. Environ. 2005, 39, 5041–5050. [Google Scholar] [CrossRef]
- Dombrovsky, L.A.; Kokhanovsky, A.A. Deep heating of a snowpack by solar radiation. Front. Therm. Eng. 2022, 2, 882941. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, P.; Kattawar, G.; Huang, H.L.A.; Greenwald, T.; Li, J.; Baum, B.A.; Zhou, D.K.; Hu, Y. A fast infrared radiative transfer model based on the adding–doubling method for hyperspectral remote-sensing applications. J. Quant. Spectrosc. Radiat. Transf. 2007, 105, 243–263. [Google Scholar] [CrossRef]
Parameter | Physical Meaning | Value |
---|---|---|
, mm | Effective grain diameter | 0.2 |
TOC, DU | Total ozone column (TOC) | 289 |
PWV, cm | Precipitable water vapor (PWV) | 0.055 |
Normalized effective oxygen column (NOX) | 0.9 | |
Aerosol optical thickness (AOT) at 550 nm | 0.02 | |
B | Aerosol Angström parameter | 1.8 |
c, ppm | Relative impurity concentration | 50.0 |
, 1/μm | Volumetric impurity absorption coefficient | 0.04 |
m | Impurity absorption Angström parameter | 4.0 |
H, m | Surface height | 3233 |
, hPa | Surface pressure | 651 |
T, K | Average temperature along vertical | 229 |
P, hPa | Average pressure along vertical | 491 |
Parameter | EnMAP 15 February 2023 | PRISMA 21 December 2022 |
---|---|---|
, mm | 0.11 | 0.2 |
TOC, DU | 250 | 289 (269) |
PWV, cm | 0.175 | 0.055 (0.045) |
TOX | 0.45 | 0.13 |
0.14 | 0.05 | |
B | 1.0 | 1.35 |
68.0 | 57.6 | |
Latitude, degrees | 75.119°S | 76.140°S |
Longitude, degrees | 123.902°E | 129.930°E |
Date/time (UTC) | 15 February 2023/ 00:36 UTC | 21 December 2022/ 00:14 UTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokhanovsky, A.; Brell, M.; Segl, K.; Chabrillat, S. SNOWTRAN: A Fast Radiative Transfer Model for Polar Hyperspectral Remote Sensing Applications. Remote Sens. 2024, 16, 334. https://doi.org/10.3390/rs16020334
Kokhanovsky A, Brell M, Segl K, Chabrillat S. SNOWTRAN: A Fast Radiative Transfer Model for Polar Hyperspectral Remote Sensing Applications. Remote Sensing. 2024; 16(2):334. https://doi.org/10.3390/rs16020334
Chicago/Turabian StyleKokhanovsky, Alexander, Maximilian Brell, Karl Segl, and Sabine Chabrillat. 2024. "SNOWTRAN: A Fast Radiative Transfer Model for Polar Hyperspectral Remote Sensing Applications" Remote Sensing 16, no. 2: 334. https://doi.org/10.3390/rs16020334
APA StyleKokhanovsky, A., Brell, M., Segl, K., & Chabrillat, S. (2024). SNOWTRAN: A Fast Radiative Transfer Model for Polar Hyperspectral Remote Sensing Applications. Remote Sensing, 16(2), 334. https://doi.org/10.3390/rs16020334