Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area—Namyang Reservoir
2.2. Data Acquisition
2.3. Multiple Linear Regression
2.4. Input Variables
2.5. Model Performance Evaluation
3. Results
3.1. Sampling Results
3.2. Multiple Linear Regression Based Chlorophyll-a Estimation Model
3.3. Chlorophyll-a Concentration Distribution in Namyang Reservoir
4. Discussion
4.1. Characteristics of Water Quality in Namyang Reservoir
4.2. Selected Input Variables
4.3. Performance of the Chlorophyll-a Estimation Model
4.4. Driving Factors of Chlorophyll-a Concentration Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Detailed Results of Water Quality Parameters for Each Sampling Date During the Study Period
Sampling Date | Chlorophyll-a (mg/m3) | TSS (mg/L) | Phycocyanin (mg/m3) | DOC (mg/L) | fDOM (QSU) | TN (mg/L) | Salinity (psu) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
12-May-2021 | 13.60 | 28.40 | 19.87 | 5.65 | 7.29 | 6.38 | 3.91 | 4.75 | 4.47 | 0.3 | 0.7 | 0.50 | |||||||||
22-May-2021 | 10.05 | 12.41 | 11.45 | 4.40 | 46.50 | 20.17 | 2.23 | 2.26 | 2.24 | 5.63 | 6.40 | 6.10 | 3.54 | 4.01 | 3.72 | 0.1 | 0.7 | 0.43 | |||
01-Jun-2021 | 9.95 | 19.35 | 15.28 | 4.40 | 28.40 | 17.07 | 2.68 | 2.96 | 2.86 | 5.91 | 7.91 | 6.69 | 0.39 | 3.49 | 2.43 | 0.2 | 0.6 | 0.37 | |||
06-Jun-2021 | 9.24 | 12.87 | 10.96 | 6.40 | 14.40 | 11.20 | 1.96 | 2.24 | 2.06 | 6.34 | 7.60 | 7.05 | 5.57 | 5.92 | 5.73 | 0.3 | 0.6 | 0.43 | |||
16-Jun-2021 | 10.15 | 15.84 | 13.92 | 14.40 | 18.24 | 16.53 | 2.14 | 2.55 | 2.33 | 6.47 | 27.52 | 14.14 | 4.70 | 4.82 | 4.77 | 0.5 | 0.5 | 0.50 | |||
21-Jun-2021 | 9.49 | 29.58 | 15.22 | 6.40 | 47.50 | 16.59 | 2.17 | 4.60 | 3.36 | 6.52 | 8.54 | 7.32 | 4.01 | 5.24 | 4.33 | 0.5 | 0.5 | 0.50 | |||
01-Jul-2021 | 12.00 | 36.11 | 23.42 | 7.20 | 28.80 | 18.13 | 3.24 | 8.64 | 5.97 | 8.19 | 9.51 | 8.65 | 3.39 | 3.74 | 3.61 | 0.5 | 0.6 | 0.53 | |||
16-Jul-2021 | 14.24 | 26.67 | 21.13 | 6.40 | 27.30 | 19.10 | 3.13 | 10.82 | 6.58 | 6.83 | 8.22 | 7.49 | 41.98 | 57.54 | 51.20 | 2.56 | 3.66 | 3.12 | 0.3 | 0.5 | 0.40 |
21-Jul-2021 | 11.53 | 36.05 | 18.52 | 4.40 | 65.30 | 21.41 | 2.06 | 8.44 | 4.76 | 5.16 | 8.08 | 6.46 | 50.82 | 60.31 | 57.76 | 1.50 | 4.56 | 2.06 | 0.3 | 0.5 | 0.41 |
26-Jul-2021 | 12.40 | 50.94 | 17.90 | 5.60 | 37.60 | 12.44 | 2.43 | 7.88 | 3.55 | 5.64 | 7.18 | 6.56 | 3.83 | 61.57 | 55.76 | 1.90 | 3.13 | 2.20 | 0.4 | 0.5 | 0.47 |
31-Jul-2021 | 17.48 | 21.90 | 19.58 | 7.20 | 14.40 | 10.80 | 2.46 | 3.69 | 3.11 | 7.19 | 8.08 | 7.66 | 53.62 | 74.12 | 61.32 | 1.73 | 3.53 | 2.34 | 0.5 | 0.5 | 0.50 |
05-Aug-2021 | 12.80 | 76.67 | 36.62 | 6.45 | 8.09 | 7.32 | 1.68 | 3.56 | 2.38 | 0.5 | 0.6 | 0.53 | |||||||||
15-Aug-2021 | 18.98 | 44.90 | 28.52 | 9.60 | 31.60 | 17.87 | 2.79 | 6.20 | 4.15 | 6.08 | 6.95 | 6.57 | 60.07 | 64.16 | 62.56 | 1.65 | 2.79 | 2.16 | 0.6 | 0.6 | 0.60 |
20-Aug-2021 | 15.14 | 43.91 | 21.51 | 13.20 | 36.00 | 20.56 | 2.39 | 5.82 | 3.67 | 5.70 | 9.46 | 6.56 | 55.22 | 63.22 | 59.69 | 1.05 | 3.39 | 1.78 | 0.3 | 0.6 | 0.54 |
04-Sep-2021 | 12.56 | 19.31 | 15.16 | 17.60 | 40.40 | 26.40 | 2.07 | 2.58 | 2.26 | 4.06 | 5.33 | 4.86 | 45.82 | 68.28 | 57.13 | 2.23 | 4.16 | 3.22 | 0.2 | 0.5 | 0.33 |
09-Sep-2021 | 10.51 | 54.36 | 25.50 | 23.20 | 32.40 | 27.80 | 1.93 | 4.51 | 2.90 | 3.76 | 4.77 | 4.41 | 19.74 | 55.81 | 44.11 | 2.02 | 4.57 | 3.26 | 0.2 | 0.4 | 0.30 |
14-Sep-2021 | 12.43 | 63.89 | 24.01 | 11.20 | 47.20 | 23.06 | 2.61 | 5.48 | 3.37 | 3.82 | 4.63 | 4.17 | 4.30 | 55.73 | 50.06 | 1.89 | 3.18 | 2.45 | 0.3 | 0.3 | 0.30 |
24-Sep-2021 | 14.56 | 24.09 | 19.67 | 13.20 | 50.00 | 31.33 | 2.71 | 3.54 | 3.02 | 3.72 | 4.23 | 4.00 | 37.91 | 48.52 | 42.53 | 2.23 | 3.75 | 3.08 | 0.1 | 0.4 | 0.27 |
09-Oct-2021 | 12.65 | 21.05 | 16.71 | 9.60 | 33.60 | 20.93 | 2.35 | 2.65 | 2.51 | 3.92 | 4.31 | 4.15 | 45.58 | 57.78 | 51.05 | 2.26 | 6.82 | 4.06 | 0.4 | 0.4 | 0.40 |
14-Oct-2021 | 13.20 | 37.28 | 23.65 | 9.60 | 48.00 | 25.60 | 2.56 | 3.82 | 3.04 | 4.09 | 4.43 | 4.30 | 46.93 | 49.16 | 47.96 | 2.07 | 5.63 | 3.49 | 0.4 | 0.4 | 0.40 |
19-Oct-2021 | 12.46 | 69.06 | 24.07 | 7.60 | 59.60 | 22.64 | 2.46 | 7.17 | 3.45 | 4.08 | 4.51 | 4.31 | 43.46 | 49.22 | 47.36 | 2.08 | 6.70 | 3.13 | 0.4 | 0.5 | 0.42 |
24-Oct-2021 | 14.03 | 22.15 | 19.10 | 14.80 | 23.20 | 18.67 | 2.53 | 3.53 | 3.03 | 4.18 | 4.73 | 4.38 | 40.26 | 46.56 | 44.25 | 2.16 | 7.30 | 4.10 | 0.5 | 0.5 | 0.50 |
29-Oct-2021 | 15.90 | 20.13 | 18.14 | 11.20 | 26.00 | 16.27 | 2.57 | 3.00 | 2.77 | 4.31 | 4.62 | 4.46 | 42.91 | 47.63 | 45.41 | 2.44 | 8.06 | 4.52 | 0.4 | 0.5 | 0.47 |
13-Nov-2021 | 10.07 | 18.20 | 14.93 | 13.60 | 45.20 | 26.53 | 2.33 | 3.02 | 2.73 | 4.79 | 5.47 | 5.20 | 44.41 | 47.92 | 45.93 | 2.75 | 5.20 | 4.06 | 0.2 | 0.5 | 0.30 |
18-Nov-2021 | 10.81 | 19.71 | 15.82 | 18.00 | 25.37 | 21.12 | 2.51 | 2.93 | 2.70 | 4.58 | 5.28 | 4.98 | 45.60 | 48.41 | 46.74 | 2.73 | 6.94 | 4.62 | 0.2 | 0.5 | 0.37 |
03-Dec-2021 | 12.20 | 26.29 | 19.21 | 18.80 | 49.60 | 34.27 | 2.75 | 3.40 | 3.03 | 37.60 | 44.89 | 41.57 | 3.03 | 5.59 | 4.55 | 0.2 | 0.5 | 0.37 | |||
08-Dec-2021 | 11.40 | 21.36 | 15.40 | 11.20 | 14.00 | 12.93 | 2.65 | 3.14 | 2.83 | 43.53 | 45.41 | 44.39 | 2.72 | 6.14 | 4.59 | 0.3 | 0.5 | 0.40 | |||
12-Jan-2022 | 8.99 | 42.67 | 22.02 | 6.00 | 18.00 | 12.13 | 2.59 | 5.00 | 3.42 | 3.60 | 13.20 | 8.00 | 40.74 | 48.35 | 43.60 | 3.76 | 9.99 | 6.32 | 0.5 | 0.6 | 0.53 |
27-Jan-2022 | 12.43 | 96.57 | 41.76 | 6.00 | 16.00 | 10.13 | 2.81 | 9.31 | 5.13 | 0.80 | 5.20 | 3.07 | 39.61 | 51.84 | 44.10 | 3.79 | 9.15 | 6.74 | 0.5 | 0.6 | 0.57 |
11-Feb-2022 | 21.38 | 27.85 | 25.00 | 5.20 | 15.20 | 10.13 | 3.40 | 3.76 | 3.64 | 1.60 | 7.20 | 3.73 | 36.21 | 50.69 | 41.52 | 3.85 | 9.63 | 6.37 | 0.6 | 0.7 | 0.63 |
21-Feb-2022 | 12.54 | 41.43 | 22.17 | 7.20 | 15.20 | 12.53 | 2.85 | 4.68 | 3.46 | 0.40 | 6.40 | 3.87 | 36.53 | 47.70 | 43.98 | 3.89 | 9.03 | 6.35 | 0.5 | 0.8 | 0.63 |
08-Mar-2022 | 14.65 | 51.14 | 28.56 | 10.00 | 17.20 | 14.67 | 3.08 | 4.70 | 3.67 | 4.00 | 10.00 | 7.33 | 16.08 | 34.11 | 27.21 | 4.23 | 8.59 | 6.21 | 0.6 | 0.9 | 0.73 |
28-Mar-2022 | 11.74 | 34.74 | 19.85 | 12.00 | 26.40 | 21.47 | 2.39 | 4.23 | 3.09 | 6.00 | 18.00 | 12.67 | 31.34 | 45.66 | 40.71 | 4.58 | 6.36 | 5.63 | 0.3 | 0.8 | 0.57 |
17-Apr-2022 | 21.03 | 25.19 | 23.07 | 12.80 | 28.80 | 18.53 | 2.76 | 3.07 | 2.93 | 3.60 | 8.40 | 5.47 | 34.57 | 51.63 | 41.06 | 6.29 | 8.40 | 7.12 | 0.6 | 0.9 | 0.77 |
02-May-2022 | 44.98 | 51.79 | 49.34 | 26.40 | 43.20 | 33.47 | 4.26 | 5.17 | 4.60 | 12.00 | 24.00 | 17.73 | 36.29 | 57.73 | 45.58 | 4.32 | 5.58 | 4.78 | 0.6 | 0.9 | 0.77 |
12-May-2022 | 49.02 | 71.56 | 56.68 | 43.20 | 72.00 | 57.87 | 4.34 | 6.30 | 5.22 | 30.00 | 46.00 | 39.73 | 41.05 | 59.03 | 51.70 | 4.41 | 6.43 | 5.18 | 0.7 | 0.9 | 0.77 |
17-May-2022 | 49.51 | 75.35 | 58.80 | 45.60 | 75.00 | 57.27 | 4.31 | 6.27 | 5.05 | 30.40 | 35.60 | 32.83 | 42.90 | 71.46 | 53.81 | 3.86 | 6.14 | 4.66 | 0.8 | 1 | 0.90 |
01-Jun-2022 | 23.55 | 56.76 | 35.23 | 13.20 | 38.40 | 22.67 | 2.98 | 6.17 | 4.05 | 5.20 | 16.40 | 10.00 | 54.39 | 80.28 | 68.00 | 3.52 | 4.39 | 4.07 | 0.8 | 1.2 | 0.97 |
16-Jun-2022 | 20.75 | 127.11 | 59.02 | 11.20 | 34.00 | 22.00 | 3.90 | 11.82 | 6.54 | 5.20 | 16.40 | 10.80 | 61.59 | 78.43 | 67.41 | 3.25 | 5.85 | 4.44 | 0.9 | 1.2 | 1.07 |
21-Jun-2022 | 14.89 | 62.35 | 36.03 | 11.20 | 33.60 | 20.80 | 3.64 | 8.45 | 6.62 | 4.00 | 12.40 | 7.33 | 69.41 | 78.50 | 72.71 | 2.74 | 3.61 | 3.09 | 0.8 | 1.2 | 1.00 |
01-Jul-2022 | 11.36 | 13.24 | 12.44 | 98.50 | 135.50 | 113.83 | 2.12 | 3.02 | 2.48 | 87.50 | 119.50 | 100.83 | 26.74 | 63.08 | 41.34 | 3.42 | 5.65 | 4.36 | 0.1 | 0.2 | 0.10 |
21-Jul-2022 | 17.24 | 62.76 | 33.25 | 20.00 | 39.20 | 31.20 | 2.74 | 6.28 | 4.74 | 13.20 | 24.00 | 19.60 | 48.40 | 52.62 | 50.48 | 2.82 | 3.67 | 3.20 | 0.2 | 0.2 | 0.20 |
26-Jul-2022 | 12.73 | 46.23 | 27.42 | 14.00 | 77.33 | 40.13 | 1.93 | 14.92 | 12.70 | 8.80 | 15.33 | 11.53 | 41.33 | 52.95 | 46.74 | 2.21 | 3.69 | 2.75 | 0.2 | 0.2 | 0.20 |
31-Jul-2022 | 10.53 | 60.53 | 32.18 | 6.40 | 30.40 | 18.13 | 2.89 | 6.61 | 4.76 | 2.80 | 17.60 | 10.27 | 52.44 | 55.09 | 53.95 | 2.22 | 3.31 | 2.66 | 0.2 | 0.3 | 0.23 |
17-Aug-2022 | 10.58 | 20.70 | 15.17 | 15.00 | 57.50 | 44.15 | 1.74 | 3.33 | 2.67 | 12.50 | 42.50 | 35.88 | 38.36 | 46.65 | 40.91 | 3.24 | 7.29 | 4.19 | 0.1 | 0.2 | 0.04 |
25-Aug-2022 | 23.54 | 122.19 | 57.79 | 24.40 | 27.20 | 26.13 | 2.78 | 8.81 | 4.82 | 15.20 | 19.60 | 17.87 | 35.71 | 47.67 | 43.09 | 2.76 | 4.83 | 3.56 | 0.1 | 0.3 | 0.17 |
13-Sep-2022 | 12.36 | 88.42 | 28.13 | 6.40 | 28.40 | 11.90 | 2.39 | 8.01 | 3.69 | 1.60 | 16.80 | 5.55 | 39.92 | 44.95 | 42.67 | 3.12 | 4.78 | 3.74 | 0.1 | 0.2 | 0.11 |
19-Sep-2022 | 15.87 | 39.50 | 26.39 | 12.40 | 36.00 | 24.67 | 2.46 | 4.54 | 3.25 | 6.00 | 24.40 | 16.27 | 46.83 | 49.33 | 47.67 | 2.68 | 4.19 | 3.30 | 0.1 | 0.2 | 0.13 |
29-Sep-2022 | 12.17 | 65.73 | 30.65 | 8.80 | 27.20 | 15.33 | 2.23 | 5.21 | 3.22 | 4.40 | 12.40 | 7.20 | 40.44 | 46.23 | 44.22 | 2.68 | 5.25 | 3.54 | 0.2 | 0.4 | 0.27 |
19-Oct-2022 | 10.89 | 46.35 | 21.46 | 9.60 | 29.20 | 18.62 | 2.33 | 5.46 | 3.61 | 5.60 | 20.00 | 12.68 | 6.37 | 53.97 | 44.56 | 2.80 | 7.92 | 3.92 | 0.3 | 0.4 | 0.31 |
24-Oct-2022 | 13.89 | 57.07 | 31.47 | 10.80 | 32.80 | 19.20 | 2.33 | 5.43 | 4.14 | 6.00 | 13.60 | 8.67 | 40.60 | 48.26 | 45.42 | 3.30 | 5.32 | 4.06 | 0.3 | 0.3 | 0.30 |
08-Nov-2022 | 9.40 | 95.71 | 18.18 | 7.20 | 33.60 | 15.14 | 2.40 | 7.95 | 3.19 | 0.40 | 10.00 | 3.20 | 42.73 | 54.36 | 44.38 | 3.72 | 7.42 | 4.59 | 0.4 | 0.5 | 0.41 |
23-Nov-2022 | 9.67 | 72.12 | 31.65 | 3.20 | 32.00 | 16.00 | 2.37 | 6.15 | 3.64 | 0.80 | 19.60 | 9.62 | 3.53 | 57.35 | 44.91 | 3.47 | 7.43 | 4.83 | 0.3 | 0.4 | 0.38 |
18-Dec-2022 | 9.59 | 69.42 | 39.51 | 6.00 | 12.00 | 9.00 | 3.18 | 5.94 | 4.56 | 0.80 | 3.60 | 2.20 | 45.30 | 50.56 | 47.93 | 0.5 | 0.6 | 0.55 |
References
- Lee, Y.G.; Kang, J.H.; Ki, S.J.; Cha, S.M.; Cho, K.H.; Lee, Y.S.; Park, Y.; Lee, S.W.; Kim, J.H. Factors dominating stratification cycle and seasonal water quality variation in a Korean estuarine reservoir. J. Environ. Monit. 2010, 12, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, 1–27. [Google Scholar] [CrossRef]
- Foley, B.; Jones, I.D.; Maberly, S.C.; Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshw. Biol. 2012, 57, 278–289. [Google Scholar] [CrossRef]
- Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manag. 2009, 52, 342–347. [Google Scholar] [CrossRef]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Ruiz Verdu, A. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ. Res. Lett. 2009, 4, 045005. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.W.; Bernard, S.; Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens. Environ. 2010, 114, 2070–2087. [Google Scholar] [CrossRef]
- Wozniak, M.; Bradtke, K.M.; Krezel, A. Comparison of satellite chlorophyll a algorithms for the Baltic Sea. J. Appl. Remote Sens. 2014, 8, 083605. [Google Scholar] [CrossRef]
- Abbas, M.M.; Melesse, A.M.; Scinto, L.J.; Rehage, J.S. Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: Validation and improvement. Water 2019, 11, 1621. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- European Space Agency (ESA). SENTINEL-2 User Handbook; ESA: Paris, France, 2015; pp. 1–64. [Google Scholar]
- Chegoonian, A.M.; Pahlevan, N.; Zolfaghari, K.; Leavitt, P.R.; Davies, J.M.; Baulch, H.M.; Duguay, C.R. Comparative Analysis of Empirical and Machine Learning Models for Chla Extraction Using Sentinel-2 and Landsat OLI Data: Opportunities, Limitations, and Challenges. Can. J. Remote Sens. 2023, 49, 2215333. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef]
- Chegoonian, A.M.; Zolfaghari, K.; Baulch, H.M.; Duguay, C.R. Support Vector Regression for Chlorophyll-a Estimation Using Sentinel-2 Images in Small Waterbodies. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7449–7452. [Google Scholar] [CrossRef]
- Ivanda, A.; Šerić, L.; Bugarić, M.; Braović, M. Mapping chlorophyll-a concentrations in the kaštela bay and brač channel using ridge regression and sentinel-2 satellite images. Electronics 2021, 10, 3004. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, D.; Choung, Y.J. Development of a multiple linear regression model for meteorological drought index estimation based on landsat satellite imagery. Water 2020, 12, 3393. [Google Scholar] [CrossRef]
- Prieto, A.J.; Silva, A.; de Brito, J.; Macías-Bernal, J.M.; Alejandre, F.J. Multiple linear regression and fuzzy logic models applied to the functional service life prediction of cultural heritage. J. Cult. Herit. 2017, 27, 20–35. [Google Scholar] [CrossRef]
- Matus-Hernández, M.Á.; Hernández-Saavedra, N.Y.; Octavio Martínez-Rincón, R. Predictive performance of regression models to estimate Chlorophyll—A concentration based on Landsat imagery. PLoS ONE 2018, 13, e0205682. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Ko, B.C.; Nam, J.Y. Predicting chlorophyll-a using Landsat 8 OLI sensor data and the non-linear RANSAC method—A case study of Nakdong River, South Korea. Int. J. Remote Sens. 2016, 37, 3255–3271. [Google Scholar] [CrossRef]
- Jung, K.W.; Yoon, C.G.; Lee, I.H.; Lee, S.I.; Kang, S.M.; Ham, J.H. Pollutants Release from Sediments in Estuarine Reservoir. J. Korean Soc. Agric. Eng. 2014, 56, 1–9. [Google Scholar] [CrossRef]
- American Public Health Association. APHA Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Lee, Y.G.; Kim, S.; Shin, J.; Rho, H.; Kim, Y.M.; Cho, K.H.; Eom, H.; Oh, S.E.; Cho, J.; Chon, K. Sequential effects of cleaning protocols on desorption of reverse osmosis membrane foulants: Autopsy results from a full-scale desalination plant. Desalination 2021, 500, 114830. [Google Scholar] [CrossRef]
- Sousa, S.I.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 2007, 22, 97–103. [Google Scholar] [CrossRef]
- Koponen, S.; Attila, J.; Pulliainen, J.; Kallio, K.; Pyhälahti, T.; Lindfors, A.; Rasmus, K.; Hallikainen, M. A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland. Cont. Shelf Res. 2007, 27, 228–244. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef]
- Dekker, A.G.; Peters, S.W.M. The use of the thematic mapper for the analysis of eutrophic lakes: A case study in the netherlands. Int. J. Remote Sens. 1993, 14, 799–821. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Koike, K.; Nhuan, M.T.; Canh, B.D.; Thao, N.T.P.; Parsons, M. Landsat 8/OLI Two bands ratio algorithm for chlorophyll-a concentration mapping in hypertrophic waters: An application to west lake in Hanoi (Vietnam). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4919–4929. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G. Spectral reflectance and absorption of a massive red tide off southern California. J. Geophys. Res. 1998, 103, 21601–21609. [Google Scholar] [CrossRef]
- Salem, S.I.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of chlorophyll-a algorithms considering different trophic statuses and optimal bands. Sensors 2017, 17, 1746. [Google Scholar] [CrossRef]
- Zimba, P.V.; Gitelson, A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gurlin, D.; Moses, W.J.; Barrow, T. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters. Environ. Res. Lett. 2009, 4, 2–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.; Xu, J. A spectral decomposition algorithm for estimating chlorophyll-a concentrations in Lake Taihu, China. Remote Sens. 2014, 6, 5090–5106. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Walther, B.A.; Moore, J.L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 2005, 28, 815–829. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance metrics for the assessment of satellite data products: An ocean color case study. Opt. Express 2018, 26, 7404. [Google Scholar] [CrossRef] [PubMed]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ueda, S.; Kawabata, H.; Hasegawa, H.; Kondo, K. Characteristics of fluctuations in salinity and water quality in brackish Lake Obuchi. Limnology 2000, 1, 57–62. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Bramich, J.; Bolch, C.J.S.; Fischer, A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol. Indic. 2021, 120, 106876. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. J. Plankton Res. 2005, 27, 125–127. [Google Scholar] [CrossRef]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.K.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GIScience Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Moses, W.J.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef]
- Hunter, P.D.; Tyler, A.N.; Carvalho, L.; Codd, G.A.; Maberly, S.C. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ. 2010, 114, 2705–2718. [Google Scholar] [CrossRef]
- Chavula, G.; Brezonik, P.; Thenkabail, P.; Johnson, T.; Bauer, M. Estimating chlorophyll concentration in Lake Malawi from MODIS satellite imagery. Phys. Chem. Earth 2009, 34, 755–760. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Wu, C.; Zhao, S.; Xu, X.; Wang, Y.; Huang, C. Estimation of chlorophyll a concentration using NIR/Red bands of MERIS and classification procedure in inland turbid water. IEEE Trans. Geosci. Remote Sens. 2012, 50, 988–997. [Google Scholar] [CrossRef]
- Odermatt, D.; Giardino, C.; Heege, T. Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens. Environ. 2010, 114, 607–617. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Zhang, Y.; Liu, X.; Guo, Y. Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: Understanding its driving and restrictive factors. Environ. Sci. Pollut. Res. 2018, 25, 1359–1374. [Google Scholar] [CrossRef]
- Han, L.; Rundquist, D.C.; Liu, L.L.; Fraser, R.N.; Schalles, J.F. The spectral responses of algal chlorophyll in water with varying levels of suspended sediment. Int. J. Remote Sens. 1994, 15, 3707–3718. [Google Scholar] [CrossRef]
- Patra, P.P.; Dubey, S.K.; Trivedi, R.K.; Sahu, S.K.; Rout, S.K. Estimation of chlorophyll—A concentration and trophic states in Nalban Lake of East Kolkata Wetland, India from Landsat 8 OLI data. Spat. Inf. Res. 2017, 25, 75–87. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Yang, W.; Fu, B.; Li, S.; Lao, Z.; Deng, T.; He, W.; He, H.; Chen, Z. Monitoring multi-water quality of internationally important karst wetland through deep learning, multi-sensor and multi-platform remote sensing images: A case study of Guilin, China. Ecol. Indic. 2023, 154, 110755. [Google Scholar] [CrossRef]
- Kong, X.; Seewald, M.; Dadi, T.; Friese, K.; Mi, C.; Boehrer, B.; Schultze, M.; Rinke, K.; Shatwell, T. Unravelling winter diatom blooms in temperate lakes using high frequency data and ecological modeling. Water Res. 2021, 190, 116681. [Google Scholar] [CrossRef] [PubMed]
- Reiss, R.S.; Lemmin, U.; Cimatoribus, A.A.; Barry, D.A. Wintertime Coastal Upwelling in Lake Geneva: An Efficient Transport Process for Deepwater Renewal in a Large, Deep Lake. J. Geophys. Res. Ocean. 2020, 125, e2020JC016095. [Google Scholar] [CrossRef]
- Menken, K.D.; Brezonik, P.L.; Bauer, M.E. Influence of chlorophyll and colored dissolved organic matter (CDOM) on lake reflectance spectra: Implications for measuring lake properties by remote sensing. Lake Reserv. Manag. 2006, 22, 179–190. [Google Scholar] [CrossRef]
- Galvao, L.S.; Pereira Filho, W.; Abdon, M.M.; Novo, E.M.M.L.; Silva, J.S.V.; Ponzoni, F.J. Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data. Int. J. Remote Sens. 2003, 24, 4093–4112. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Grendaitė, D.; Stonevičius, E. Uncertainty of atmospheric correction algorithms for chlorophyll α concentration retrieval in lakes from Sentinel-2 data. Geocarto Int. 2022, 37, 6867–6891. [Google Scholar] [CrossRef]
Band Algorithm | Sentinle-2 Band | Study Area | Image | Reference |
---|---|---|---|---|
log(R443/R550) | log(B1/B3) | Coastal | SeaWiFS | [9] |
log(R490/R555) | log(B2/B3) | |||
ln(R443/R555) | ln(B1/B3) | Bay | GLI satellite | [32] |
ln(R490/R555) | ln(B2/B3) | |||
(R490 − R665)/(R560 − R665) | (B2 − B4)/(B3 − B4) | Sea | MERIS | [12] |
NDCI (R490, R443) | (B2 − B1)/(B2 + B1) | Bay | TriOS-RAMSES hyperspectral radiometers | [33] |
(R443−1 − R490−1) × R560 | (B1−1 − B2−1) × B3 | |||
(R740/R710) − (R740/R650) | (B6/B5) − (B6/B4) | Pond | Ocean Optics USB2000 radiometer | [34] |
(R665−1 − R705−1) × R740 | (B4−1 − B5−1) × B6 | |||
R667−1 − R710−1 | B4−1 − B5−1 | Lake | MODIS/MERIS | [35] |
(R681−1 − R708−1) × R753 | (B4−1 − B5−1) × B6 | |||
(R681−1 − R708−1) × R783 | (B4−1 − B5−1) × B7 | Lake | MERIS | [36] |
(R665−1 − R708−1) /(R753−1 − R708−1) | (B4−1 − B5−1)/ (B6−1 − B5−1) | |||
(R708−1 − R665−1) /(R560−1 + R510−1) | (B5−1 − B4−1)/ (B31 + B21) | |||
R708/(R490 + R510) | B5/(B3 + B4) | Bay | MODIS/MERIS | [28] |
R704 − ((B665 + 740)/2) | B5 − ((B4 + B6)/2) | Lake | Sentinel-2 | [29] |
(R665−1 − R705−1) × R740 | (B4−1 − B5−1) × B6 | |||
(R665−1 − R705−1) /(R740−1 − R705−1) | (B4−1 − B5−1) /(B6−1 − B5−1) |
All Samples (n = 345) | Min | Max | Mean | SD | Mean | ||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | |||||
Chlorophyll-a (mg/m3) | 8.99 | 127.11 | 23.45 | 17.45 | 16.93 | 26.55 | 35.46 |
TSS (mg/L) | 3.20 | 135.50 | 21.83 | 15.94 | 17.14 | 22.82 | 32.20 |
Phycocyanin (mg/m3) | 1.74 | 14.92 | 3.65 | 1.61 | 2.90 | 3.92 | 4.58 |
DOC (mg/L) | 0.40 | 119.50 | 11.08 | 13.55 | 5.20 | 5.79 | 5.63 |
fDOM (QSU) | 3.53 | 80.28 | 48.78 | 10.09 | 14.90 | 14.97 | 16.43 |
TN (mg/L) | 0.39 | 9.99 | 3.68 | 1.57 | 3.46 | 3.72 | 5.21 |
Salinity (psu) | 0.10 | 1.20 | 0.42 | 0.19 | 0.53 | 0.44 | 0.41 |
Season | TSS | PC | DOC | fDOM | TN | Salinity | |
---|---|---|---|---|---|---|---|
Spring | Chlorophyll-a | 0.710 ** (p < 0.001) | 0.797 ** (p < 0.001) | 0.749 ** (p < 0.001) | 0.711** (p < 0.001) | 0.038 (p = 0.886) | 0.451 (p = 0.069) |
Summer | 0.434 ** (p < 0.001) | 0.623 ** (p < 0.001) | 0.048 (p = 0.736) | 0.305 ** (p < 0.001) | 0.181 (p = 0.092) | 0.251 * (p < 0.05) | |
Autumn | 0.602 ** (p < 0.001) | 0.948 ** (p < 0.001) | 0.688 ** (p < 0.001) | −0.038 (p = 0.748) | 0.520 ** (p < 0.001) | 0.035 (p = 0.765) | |
Winter | 0.510 (p = 0.196) | 0.994 ** (p < 0.001) | 0.577 (p = 0.175) | 0.049 (p = 0.909) | 0.864 ** (p < 0.001) | −0.045 (p = 0.916) |
Chlorophyll-a (mg/m3) | TSS (mg/L) | Phycocyanin (mg/m3) | DOC (mg/L) | fDOM (QSU) | ||
---|---|---|---|---|---|---|
Group 1 (n = 145) | Range | 0.0–30.0 | 3.2–98.5 | 1.9–10.8 | 0.4–87.5 | 3.8–69.4 |
Mean | 16.0 | 15.6 | 3.4 | 6.2 | 50.3 | |
Group 2 (n = 24) | Range | 30.0–50.0 | 12.4–45.6 | 3.5–14.9 | 4.1–30.4 | 36.3–70.2 |
Mean | 38.6 | 26.6 | 5.0 | 10.7 | 50.0 | |
Group 3 (n = 20) | Range | 50.0–130.0 | 16.0–74.9 | 4.4–11.8 | 4.5–35.6 | 3.5–80.3 |
Mean | 66.4 | 34.4 | 6.2 | 15.1 | 51.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.; Kim, J.; Kim, J.H.; Shin, J.-K.; Chon, K.; Kang, E.T.; Park, Y.; Kim, S. Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sens. 2024, 16, 315. https://doi.org/10.3390/rs16020315
Jang W, Kim J, Kim JH, Shin J-K, Chon K, Kang ET, Park Y, Kim S. Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sensing. 2024; 16(2):315. https://doi.org/10.3390/rs16020315
Chicago/Turabian StyleJang, Wonjin, Jinuk Kim, Jin Hwi Kim, Jae-Ki Shin, Kangmin Chon, Eue Tae Kang, Yongeun Park, and Seongjoon Kim. 2024. "Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability" Remote Sensing 16, no. 2: 315. https://doi.org/10.3390/rs16020315
APA StyleJang, W., Kim, J., Kim, J. H., Shin, J. -K., Chon, K., Kang, E. T., Park, Y., & Kim, S. (2024). Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sensing, 16(2), 315. https://doi.org/10.3390/rs16020315