A New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Data
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. The Rias Baixas
2.2. Sentinel-3 Imagery
2.3. INTECMAR Data
3. Methods
3.1. Image Processing and Dataset Generation
3.2. Support Vector Machine Models
3.2.1. Scaling and Imbalance Effect
3.2.2. Model Selection
3.2.3. Model Evaluation
4. Results
4.1. SVM Models
4.2. Comparison with the Linear Model
5. Discussion
5.1. Spatial and Temporal Distribution of Pseudo-nitzschia spp. Abundance
5.2. Relationships between Pseudo-nitzschia spp. Abundance and Sentinel-3 Data
5.3. Performance of Models and Threshold Analysis
5.4. Model Evaluation and Filling Observational Gaps of Pseudo-nitzschia spp. Evolution
5.5. Pseudo-nitzschia spp. Maps
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gobler, C.J.; Doherty, O.M.; Hattenrath-Lehmann, T.K.; Griffith, A.W.; Kang, Y.; Litaker, R.W. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl. Acad. Sci. USA 2017, 114, 4975–4980. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D. HABs in a changing world: A perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change. In Proceedings of the 15th International Conference on Harmful Algae: CECO, Changwon, Gyeongnam, Republic of Korea, 29 October–2 November 2012; Kim, H.G., Reguera, B., Hallegraeff, G.M., Lee, C.K., Eds.; pp. 3–17. [Google Scholar]
- Gobler, C.J. Climate Change and Harmful Algal Blooms: Insights and perspective. Harmful Algae 2020, 91, 101731. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manag. 2009, 52, 342. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.; Cembella, A.; Hallegraeff, G. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef]
- Tyler, A.N.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321. [Google Scholar] [CrossRef] [PubMed]
- Spyrakos, E.; Hunter, P.; Simis, S.; Neil, C.; Riddick, C.; Wang, S.; Varley, A.; Blake, M.; Groom, S.; Palenzuela, J.T.; et al. Moving towards global satellite based products for monitoring of inland and coastal waters. Regional examples from Europe and South America. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 363–368. [Google Scholar]
- Spyrakos, E.; González Vilas, L.; Torres Palenzuela, J.M.; Barton, E.D. Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): Application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle. Remote Sens. Environ. 2011, 115, 2471–2485. [Google Scholar] [CrossRef]
- Amin, R.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery. Opt. Express 2009, 17, 9126–9144. [Google Scholar] [CrossRef]
- Kurekin, A.A.; Miller, P.I.; Woerd, H.J.V.d. Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data. Harmful Algae 2014, 31, 163–176. [Google Scholar] [CrossRef]
- Moore, T.S.; Dowell, M.D.; Franz, B.A. Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors. Remote Sens. Environ. 2012, 117, 249–263. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Kudela, R.M.; Ryan, J.P.; Zimmerman, R.C. Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr. 2006, 51, 2646–2659. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Carder, K.L.; Chen, F.R.; Heil, C.A.; Vargo, G.A. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data. Cont. Shelf Res. 2008, 28, 137–158. [Google Scholar] [CrossRef]
- Brown, C.W.; Podestá, G.P. Remote sensing of coccolithophore blooms in the Western South atlantic ocean. Remote Sens. Environ. 1997, 60, 83–91. [Google Scholar] [CrossRef]
- Kopelevich, O.; Burenkov, V.; Sheberstov, S.; Vazyulya, S.; Kravchishina, M.; Pautova, L.; Silkinb, V.; Artemieva, V.; Grigorieva, A. Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sens. Environ. 2014, 146, 113–123. [Google Scholar] [CrossRef]
- Shutler, J.D.; Grant, M.G.; Miller, P.I.; Rushton, E.; Anderson, K. Coccolithophore bloom detection in the north east Atlantic using SeaWiFS: Algorithm description, application and sensitivity analysis. Remote Sens. Environ. 2010, 114, 1008–1016. [Google Scholar] [CrossRef]
- Dupouy, C.; Benielli-Gary, D.; Neveux, J.; Dandonneau, Y.; Westberry, T.K. An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific. Biogeosciences 2011, 8, 3631–3647. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Young, E. Global remote sensing of Trichodesmium. Int. J. Remote Sens. 2014, 35, 5459–5466. [Google Scholar] [CrossRef]
- Hu, C.; Cannizzaro, J.; Carder, K.L.; Muller-Karger, F.; Hardy, R. Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Remote Sens. Environ. 2010, 114, 2048–2058. [Google Scholar] [CrossRef]
- Kudela, R.M.; Stumpf, R.P.; Petrov, P. Acquisition and analysis of remote sensing imagery of harmful algal blooms. In Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management; Anderson, D.M., Boerlage, S.F., Dixon, M.B., Eds.; (IOC Manuals and Guides No. 78); Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 2017; pp. 119–132. [Google Scholar]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef]
- Shen, L.; Xu, H.; Guo, X. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural. Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Zhu, G.; Blumberg, D.G. Classification using ASTER data and SVM algorithms; The case study of Beer Sheva, Israel. Remote Sens. Environ. 2002, 80, 233–240. [Google Scholar] [CrossRef]
- Bates, S.S.; Hubbard, K.A.; Lundholm, N.; Montresor, M.; Leaw, C.P. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae 2018, 79, 3–43. [Google Scholar] [CrossRef]
- Lelong, A.; Hégaret, H.; Soudant, P.; Bates, S.S. Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: Revisiting previous paradigms. Phycologia 2012, 51, 168–216. [Google Scholar] [CrossRef]
- Trainer, V.L.; Bates, S.S.; Lundholm, N.; Thessen, A.E.; Cochlan, W.P.; Adams, N.G.; Trick, G.C. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 2012, 14, 271–300. [Google Scholar] [CrossRef]
- Ryan, J.P.; Kudela, R.M.; Birch, J.M.; Blum, M.; Bowers, H.A.; Chavez, F.P.; Doucette, G.J.; Hayashi, K.; Marin, R., III; Mikulski, C.M.; et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. 2017, 44, 5571–5579. [Google Scholar] [CrossRef]
- Anderson, C.R.; Sapiano, M.R.P.; Prasad, M.B.K.; Long, W.; Tango, P.J.; Brown, C.W.; Murtugudde, R. Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay. J. Mar. Syst. 2010, 83, 127–140. [Google Scholar] [CrossRef]
- Anderson, C.R.; Siegel, D.A.; Kudela, R.M.; Brzezinski, M.A. Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae 2009, 8, 478–492. [Google Scholar] [CrossRef]
- Margalef, R. Estructura y dinámica de la “purga de mar” en Ría de Vigo. Investig. Pesq. 1956, 5, 113–134. [Google Scholar]
- Torres Palenzuela, J.M.; González Vilas, L.; Bellas, F.M.; Garet, E.; González-Fernández, Á.; Spyrakos, E. Pseudo-nitzschia Blooms in a Coastal Upwelling System: Remote Sensing Detection, Toxicity and Environmental Variables. Water 2019, 11, 1954. [Google Scholar] [CrossRef]
- González Vilas, L.; Spyrakos, E.; Torres Palenzuela, J.M.; Pazos, Y. Support Vector Machine-based method for predicting Pseudo-nitzschia spp. blooms in coastal waters (Galician rias, NW Spain). Prog. Oceanogr. 2014, 124, 66–77. [Google Scholar] [CrossRef]
- Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T. The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog. Oceanogr. 2010, 85, 5–32. [Google Scholar] [CrossRef]
- Labarta, U.; Fernández-Reiriz, M.J. The Galician mussel industry: Innovation and changes in the last forty years. Ocean Coast. Manag. 2019, 167, 208–218. [Google Scholar] [CrossRef]
- Fraga, S.; Alvarez, M.J.; Míguez, A.; Fernández, M.L.; Costas, E.; Lopez-Rodas, V. Pseudo-nitzschia species isolated from Galician waters: Toxicity, DNA content and lectin binding assay. In Harmful Algae; Reguera, B., Blanco, B., Fernández, M.L., Wyatt, T., Eds.; Xunta de Galicia and Intergovernmental Commission of UNESCO: Santiago de Compostela, Spain, 1998; pp. 270–273. [Google Scholar]
- Rodríguez, G.R.; Villasante, S.; García-Negro, M.C. Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Mar. Policy 2011, 35, 252–257. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt. Int. Ver. Theor. Unde Amgewandte Limnol. 1958, 9, 38. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric correction on the presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- González Vilas, L.; Spyrakos, E.; Torres Palenzuela, J.M. Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician Rias (NW Spain). Remote Sens. Environ. 2011, 115, 524–535. [Google Scholar] [CrossRef]
- Chang, C.-C.L.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:21–27:27. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Sarle, W.S. Neural networks and statistical models. In Proceedings of the SUGI19: Proceedings of the Nineteenth Annual SAS Users Group International Conference, Dallas, TX, USA, 10–13 April 1994; SAS Institute: Cary, NC, USA, 1994; pp. 1538–1550. [Google Scholar]
- Liu, C.; White, M.; Newell, G. Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 2011, 34, 232–243. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Data Mining, Inference and Prediction, 2nd ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- García-Roselló, E.; Guisande, C.; González-Vilas, L.; González-Dacosta, J.; Heine, J.; Pérez-Costas, E.; Lobo, J.M. A simple method to estimate the probable distribution of species. Ecography 2019, 42, 613–1622. [Google Scholar] [CrossRef]
- Del Vecchio, R.; Blough, N.V. Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar. Chem. 2004, 89, 169–187. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Raux, P.; Perez-Agundez, J.; Chenouf, S. Integrated management of Harmful Algal Blooms (HABs) along the French Channel area. A system approach to assess and manage socio-economic impacts of HABs. In Harmful Algae 2018—From Ecosystems to Socioecosystems, Proceedings of the 18th International Conference on Harmful Algae, Nantes, France, 21–26 October 2018; International Society for the Study of Harmful Algae: Nantes, France, 2018; pp. 195–198. [Google Scholar]
Complete Period | 2016 April–December | 2017 | 2018 | 2019 | 2020 January–September | |
# Images | 1446 | 159 | 220 | 241 | 471 | 355 |
# Valid images | 989 | 118 | 158 | 142 | 317 | 254 |
# Images with match-ups | 260 | 36 | 41 | 36 | 81 | 66 |
# Sampling days | 465 | 77 | 103 | 104 | 103 | 78 |
# Samples | 7740 | 1328 | 1679 | 1790 | 1771 | 1172 |
# Match-ups | 4607 | 638 | 704 | 666 | 1482 | 1117 |
# Valid match-ups | 3008 | 482 | 472 | 393 | 961 | 700 |
# Valid HQ match-ups | 2171 | 359 | 330 | 297 | 699 | 486 |
Study Area | Vigo (175 km2) | Pontev. (145 km2) | Arousa (230 km2) | Muros (120 km2) | ||
# Stations/HQ | 38/32 | 9/8 | 11/9 | 10/10 | 8/5 | |
# Samples | 7740 | 1775 | 2361 | 2174 | 1430 | |
# Match-ups | 4607 | 1006 | 1356 | 1306 | 939 | |
# Valid match-ups | 3008 | 666 | 830 | 1020 | 492 | |
# Valid HQ match-ups | 2171 | 485 | 456 | 890 | 340 |
Below Detection Limit/Presence (PNOI-BD/P) | ||||||||
#BD | #P | Sens. | Spec. | Prec. | TSS | F1 | AUC | |
LOU CV | 973 | 655 | 0.73 | 0.71 | 0.79 | 0.43 | 0.75 | 0.78 |
Training set | 0.84 | 0.82 | 0.87 | 0.66 | 0.86 | 0.91 | ||
Test set | 366 | 177 | 0.70 | 0.63 | 0.79 | 0.32 | 0.74 | 0.68 |
No Bloom/Bloom (PNOI-NB/B) | ||||||||
#NB | #B | Sens. | Spec. | Prec. | TSS | F1 | AUC | |
LOU CV | 1393 | 235 | 0.73 | 0.72 | 0.30 | 0.45 | 0.43 | 0.76 |
Training set | 0.92 | 0.90 | 0.61 | 0.82 | 0.74 | 0.94 | ||
Test set | 465 | 78 | 0.72 | 0.79 | 0.37 | 0.51 | 0.48 | 0.80 |
Presence Detection | ||||||||||
#BD | #P | Model | Threshold | Sens. | Spec. | Prec. | TSS | F1 | AUC | |
832 | 1339 | BD/P | F1 | 0.504 | 0.91 | 0.64 | 0.80 | 0.55 | 0.86 | 0.86 |
TSS | 0.640 | 0.80 | 0.78 | 0.85 | 0.58 | 0.83 | ||||
Linear | 3 | 0.56 | 0.74 | 0.78 | 0.30 | 0.73 | ||||
Bloom Detection | ||||||||||
#NB | #B | Model | Threshold | Sens. | Spec. | Prec. | TSS | F1 | AUC | |
1858 | 313 | NB/B | TSS | 0.430 | 0.87 | 0.87 | 0.54 | 0.75 | 0.67 | 0.90 |
F1 | 0.512 | 0.79 | 0.93 | 0.65 | 0.72 | 0.72 | ||||
Linear | 5 | 0.01 | 0.99 | 0.30 | 0.01 | 0.33 | ||||
BD/P+ NB/B | F1 + TSS | 0.86 | 0.88 | 0.54 | 0.74 | 0.66 | ||||
F1 + F1 | 0.78 | 0.93 | 0.65 | 0.71 | 0.71 | |||||
TSS + TSS | 0.81 | 0.88 | 0.54 | 0.70 | 0.65 | |||||
TSS + F1 | 0.74 | 0.93 | 0.65 | 0.68 | 0.69 |
#Samples #HQ Match-Ups | log10P-n | BD | P-NB | P-B | |
---|---|---|---|---|---|
Vigo | 1775 | 2.59 ± 2.27 | 747 (42.08%) | 783 (44.11%) | 245 (13.80%) |
485 | 2.76 ± 2.25 | 186 (38.35%) | 227 (46.8%) | 72 (14.85%) | |
Pontevedra | 2361 | 2.58 ± 2.21 | 969 (41.04%) | 1138 (48.2%) | 254 (10.76%) |
456 | 2.82 ± 2.17 | 163 (35.75%) | 224 (49.12%) | 69 (15.13%) | |
Arousa | 2174 | 2.53 ± 2.22 | 919 (42.27%) | 1047 (48.16%) | 208 (9.57%) |
890 | 2.64 ± 2.24 | 361 (40.56%) | 421 (47.3%) | 108 (12.13%) | |
Muros | 1430 | 2.98 ± 2.23 | 489 (34.20%) | 689 (48.18%) | 252 (17.62%) |
340 | 2.94 ± 2.28 | 122 (35.88%) | 154 (45.29%) | 64 (18.82%) | |
Study area | 7740 | 2.59 ± 2.27 | 3124 (40.36%) | 3657 (47.25%) | 959 (12.39%) |
2171 | 2.75 ± 2.23 | 832 (38.32%) | 1026 (47.26%) | 313 (14.42%) |
#Samples #HQ Match-Ups | log10P-n | BD | P-NB | P-B | |
---|---|---|---|---|---|
2016 | 1328 | 2.73 ± 2.24 | 515 (38.78%) | 609 (45.86%) | 204 (15.36%) |
359 | 2.80 ± 2.25 | 133 (37.05%) | 160 (44.57%) | 66 (18.38%) | |
2017 | 1679 | 3.12 ± 2.00 | 468 (27.87%) | 1049 (62.48%) | 162 (9.65%) |
330 | 3.35 ± 1.79 | 69 (20.91%) | 234 (70.91%) | 27 (8.18%) | |
2018 | 1790 | 2.67 ± 2.31 | 737 (41.17%) | 781 (43.63%) | 272 (15.20%) |
297 | 2.95 ± 2.33 | 110 (37.04%) | 129 (43.43%) | 58 (19.53%) | |
2019 | 1771 | 2.34 ± 2.23 | 826 (46.64%) | 773 (43.65%) | 172 (9.71%) |
699 | 2.42 ± 2.25 | 315 (45.06%) | 303 (43.35%) | 81 (11.59%) | |
2020 | 1172 | 2.29 ± 2.31 | 578 (49.32%) | 445(37.97%) | 149 (12.71%) |
486 | 2.66 ± 2.32 | 205 (42.18%) | 200 (41.15%) | 81 (16.67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Vilas, L.; Spyrakos, E.; Pazos, Y.; Torres Palenzuela, J.M. A New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Data. Remote Sens. 2024, 16, 298. https://doi.org/10.3390/rs16020298
González Vilas L, Spyrakos E, Pazos Y, Torres Palenzuela JM. A New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Data. Remote Sensing. 2024; 16(2):298. https://doi.org/10.3390/rs16020298
Chicago/Turabian StyleGonzález Vilas, Luis, Evangelos Spyrakos, Yolanda Pazos, and Jesus M. Torres Palenzuela. 2024. "A New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Data" Remote Sensing 16, no. 2: 298. https://doi.org/10.3390/rs16020298
APA StyleGonzález Vilas, L., Spyrakos, E., Pazos, Y., & Torres Palenzuela, J. M. (2024). A New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Data. Remote Sensing, 16(2), 298. https://doi.org/10.3390/rs16020298