Integrated Assessment of Coastal Subsidence in Nansha District, Guangzhou City, China: Insights from SBAS-InSAR Monitoring and Risk Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overall Framework
2.3. Technology and Methodology
2.3.1. SBAS-InSAR Technology
2.3.2. Risk Evaluation Methods
2.4. Data Sources
3. Results
3.1. Ground Subsidence Spatial and Temporal Distribution Characteristics
3.1.1. Spatial Distribution Characteristics
3.1.2. Temporal Evaluation Characteristics
3.1.3. Verification of Monitoring Accuracy
3.2. Factors Affecting Ground Subsidence
3.2.1. Effect of Soft-Soil Thickness on Ground Subsidence
3.2.2. Effects of Groundwater Extraction on Ground Subsidence
3.2.3. Effects of Ground Loads on Ground Subsidence
- (1)
- Ground subsidence across the entire domain is primarily influenced by the thickness of soft-soil deposits, exhibiting a significant positive correlation.
- (2)
- Ground subsidence in the broader domain is mainly influenced by groundwater extraction, and variations in subsidence align with seasonal changes in aquaculture.
- (3)
- Ground subsidence in localized areas is primarily affected by ground loading, with significant subsidence phases corresponding to different stages of engineering projects, indicating substantial ground disturbance induced by these activities.
3.3. Evaluation of Ground Subsidence Risk
3.3.1. Ground Subsidence Susceptibility
3.3.2. Ground Subsidence Vulnerability
3.3.3. Ground Subsidence Risk Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- Shirzaei, M.; Freymueller, J.; Tornqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S.J. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Liu, C.J.; Zhang, Q.; Lu, Z.; Yang, C.S. Deformation of Linfen-Yuncheng Basin (China) and its mechanisms revealed by Π-RATE InSAR technique. Remote Sens. Environ. 2018, 218, 221–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.J.; Liu, Y.X.; Liu, Y.L. Self-weight consolidation and compaction of sediment in the Yellow River Delta, China. Phys. Geogr. 2018, 39, 84–98. [Google Scholar] [CrossRef]
- Pan, Y.J.; Ding, H.; Li, J.T.; Shum, C.K.; Mallick, R.; Jiao, J.S.; Li, M.K.; Zhang, Y. Transient hydrology-induced elastic deformation and land subsidence in Australia constrained by contemporary geodetic measurements. Earth Planet Sc. Lett. 2022, 588, 117556. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.J. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China. Nat. Hazards 2013, 68, 687–709. [Google Scholar] [CrossRef]
- Li, D.; Li, B.; Zhang, Y.X.; Fan, C.; Xu, H.; Hou, X.Y. Spatial and temporal characteristics analysis for land subsidence in Shanghai coastal reclamation area using PS-InSAR method. Front. Mar. Sci. 2022, 9, 1000523. [Google Scholar] [CrossRef]
- Wu, P.C.; Wei, M.; D’Hondt, S. Subsidence in Coastal Cities Throughout the World Observed by InSAR. Geophys. Res. Lett. 2022, 49, e2022GL098477. [Google Scholar] [CrossRef]
- Su, G.L.; Wu, Y.Q.; Zhan, W.; Zheng, Z.J.; Chang, L.; Wang, J.Q. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China plain during the past six decades. J. Hydrol. 2021, 600, 126678. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Cwiakala, P.; Gruszczynski, W.; Stoch, T.; Puniach, E.; Mrochen, D.; Matwij, W.; Matwij, K.; Nedzka, M.; Sopata, P.; Wojcik, A. UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sens. 2020, 12, 1733. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Ng, A.H.M.; Wang, H.; Chen, J.W.; Du, Z.Y.; Ge, L.L. Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data. Int. J. Appl. Earth Obs. 2023, 118, 103228. [Google Scholar] [CrossRef]
- Li, Y.F.; Zuo, X.Q.; Yang, F.; Bu, J.W.; Wu, W.H.; Liu, X.Y. Effectiveness evaluation of DS-InSAR method fused PS points in surface deformation monitoring: A case study of Hongta District, Yuxi City, China. Geomat. Nat. Hazards Risk 2023, 14, 2176011. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, K.M.; Zhang, J.H.; Hou, Z.X.; Wang, S.; Ding, X.M. Research on time series InSAR monitoring method for multiple types of surface deformation in mining area. Nat. Hazards 2022, 114, 2479–2508. [Google Scholar] [CrossRef]
- Huang, L.Q.; Hajnsek, I. Polarimetric Behavior for the Derivation of Sea Ice Topographic Height from TanDEM-X Interferometric SAR Data. IEEE J-Stars. 2021, 14, 1095–1110. [Google Scholar] [CrossRef]
- Ng, A.H.M.; Liu, Z.Y.; Du, Z.Y.; Huang, H.W.; Wang, H.; Ge, L.L. A novel framework for combining polarimetric Sentinel-1 InSAR time series in subsidence monitoring-A case study of Sydney. Remote Sens. Environ. 2023, 295, 113694. [Google Scholar] [CrossRef]
- Cianflone, G.; Tolomei, C.; Brunori, C.A.; Dominici, R. InSAR Time Series Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of Sibari (Southern Italy). Remote Sens. 2015, 7, 16004–16023. [Google Scholar] [CrossRef]
- Du, Q.S.; Li, G.Y.; Chen, D.; Zhou, Y.; Qi, S.S.; Wu, G.; Chai, M.T.; Tang, L.Y.; Jia, H.L.; Peng, W.L. SBAS-InSAR-Based Analysis of Surface Deformation in the Eastern Tianshan Mountains, China. Front. Earth Sci. 2021, 9, 729454. [Google Scholar] [CrossRef]
- Galve, J.; Pérez-Peña, J.; Azañón, J.; Closson, D.; Caló, F.; Reyes-Carmona, C.; Jabaloy, A.; Ruano, P.; Mateos, R.; Notti, D.; et al. Evaluation of the SBAS InSAR Service of the European Space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens. 2017, 9, 1291. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Yi, L.X.; Jiang, Y.X.; Zheng, Y.J.; Dong, L.X.; Kang, J.; Yuan, J.; Yang, Y.P. Generating strategies for land subsidence control and remediation based on risk classification evaluation in Tianjin, China. Nat. Hazards 2022, 114, 733–749. [Google Scholar]
- Dai, K.R.; Chen, C.; Shi, X.L.; Wu, M.T.; Feng, W.K.; Xu, Q.; Liang, R.B.; Zhuo, G.C.; Li, Z.H. Dynamic landslides susceptibility evaluation in Baihetan Dam area during extensive impoundment by integrating geological model and InSAR observations. Int. J. Appl. Earth Obs. 2023, 116, 103157. [Google Scholar] [CrossRef]
- Zhao, F.M.; Meng, X.M.; Zhang, Y.; Chen, G.; Su, X.J.; Yue, D.X. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.K. Land subsidence monitoring and influencing factors analysis in Nansha district of Guangzhou based on time series InSAR. Master’s Thesis, Guangxi University, Nanning, China, 2021. [Google Scholar]
- Zhu, S.J.; Dai, X.Z. Problems and Paths of Constructing High-Quality Development Demonstration Zone of Marine Economy—A Case Study of Nansha District of Guangzhou City. Nat. Resour. Econ. China 2022, 35, 19–23+55. [Google Scholar]
- Fan, L.; Xun, Z.Z.; Peng, S.Q. A Comparative Case Study on Drainage Consolidation Improvement of Soft Soil under Vacuum Preloading and Surcharge Preloading. Appl. Sci. 2023, 13, 5782. [Google Scholar] [CrossRef]
- Lei, H.Y.; Wang, L.; Zhang, W.D.; Jiang, M.J.; Bo, Y.; Song, W.F.; Cao, Q.G. Geotechnical properties of the South China Sea soft soil: A comparative study with the soils from Bohai Sea and Yellow Sea. Bull. Eng. Geol. Environ. 2023, 82, 158. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, J.S.; Mao, L.; Liu, F.R. Compression and Shear Deformation Properties of Marine Soft Soil Deposits in the Pearl River Delta. China Earthq. Eng. J. 2018, 40, 745–751. [Google Scholar]
- Li, X.W.; Tan, Y.M.; Xue, D.S. From World Factory to Global City-Region: The Dynamics of Manufacturing in the Pearl River Delta and Its Spatial Pattern in the 21st Century. Land 2022, 11, 625. [Google Scholar] [CrossRef]
- Zhou, A.C. Progress of the Current Situation, Development Trend and Prevention and Control of Geologic Hazards in Nansha District, Guangzhou City, China. Ground Water 2022, 44, 180–183. [Google Scholar]
- Chen, Y.L.; Kuang, C.L.; Dai, W.J.; Xie, R.A.; Lu, C.L. Land Subsidence Monitoring Using GPS Network in Nansha, Guangzhou. J. Geod. Geodyn. 2015, 35, 849–852. [Google Scholar]
- Yu, G.M.; Li, D.Z.; Qu, S.X. Analysis of the land subsidence characteristics of soft soil in Guangzhou. Shanghai Land. Resour. 2017, 38, 22–25. [Google Scholar]
- Li, G.E.; Zhou, Y.H. Study on Fusion Methods of InSAR, Leveling and GPS Data. Bull. Surv. Mapp. 2017, 9, 78–82. [Google Scholar]
- Wu, L.F.; Chen, L.W.; Peng, W.P. Research of PSInSAR Technology in Land Subsidence Monitoring in Nansha of Guangzhou. Urban. Geotech. Investig. Surv. 2019, 3, 127–130. [Google Scholar]
- Zhang, Y.L.; Zeng, X.M.; Wang, C.W.; Du, Z.B.; Shi, X.C. Land Subsidence Monitoring of the West Bank of the Pearl River Estuary Based on QPS-InSAR. J. Geomat. 2022, 47, 110–114. [Google Scholar]
- Liu, Z.L.; Yu, Y.; Ke, X.B.; Luo, X.Y. Distribution characteristics and causes of land subsidence in Nansha District, Guangzhou. The Chin. J. Geol. Hazard. Control. 2023, 34, 49–57. [Google Scholar]
- Lin, G.K.; Wu, Z.F.; Cao, Z.; Guan, W.C. Land Subsidence Monitoring in Reclamation Area based on SBAS-InSAR Technique. Remote Sens. Technol. Appl. 2021, 36, 1358–1367. [Google Scholar]
- Wu, S.Z.; Xie, R.A.; Xie, W.Z.; Luo, S.R. Ground subsidence monitoring in Nansha district by using Sentinel 1A/B SAR images. Geotech. Investig. Surv. 2020, 48, 48–52. [Google Scholar]
- Shao, S.; Luo, X.Y.; Yao, J.R.; Jia, Y.; Ye, J.; Meng, X.P.; Ma, X.J. Land subsidence monitoring and inducing factor analysis based on InSAR technology for Nansha District of Guangzhou City. Guangxi Water Resour. Hydropower Eng. 2023, 2, 7–13. [Google Scholar]
- Zeng, M.; Pi, P.C.; Zhao, X.W.; Chen, S.; Peng, H.X.; Hou, Q.Q.; Sun, H.M.; Xue, Z.X. Spatial-temporal Characteristics of Land Subsidence in the Typical Reclamation area of Pearl River Estuary Based on PS-InSAR. S. China Geol. 2023, 39, 116–126. [Google Scholar]
- Chen, Y.K.; Gao, L.; Qu, S.X. Study on soft soil distribution and land subsidence features in Nansha District, Guangzhou. Resour. Inf. Eng. 2021, 36, 19–21. [Google Scholar]
- Tang, B.; Chen, Z.H.; Zhang, Y.Y.; Sun, H. A study on the evolution of economic patterns and urban network system in Guangdong-Hong Kong-Macao greater bay area. Front. Public. Health 2022, 10, 973843. [Google Scholar] [CrossRef] [PubMed]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.P.; Zeni, G.; Lanari, R. Surface deformation of Long Valley Caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, Z.; Zhang, Q.; de la Fuente, J. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.H.; Hoey, T.; Kincal, C.; Zhang, J.F.; Zeng, Q.M.; Muller, J.P. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int. J. Appl. Earth Obs. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Chen, Y. Conceptual Framework for the Development of an Indicator System for the Assessment of Regional Land Subsidence Disaster Vulnerability. Sustainability 2016, 8, 757. [Google Scholar] [CrossRef]
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef]
- Hu, B.B.; Zhou, J.; Wang, J.; Chen, Z.L.; Wang, D.Q.; Xu, S.Y. Risk assessment of land subsidence at Tianjin coastal area in China. Environ. Earth Sci. 2009, 59, 269–276. [Google Scholar] [CrossRef]
- Dong, H.G.; Huang, C.S.; Chen, W.; Zhang, H.X.; Zhi, B.F.; Zhao, X.W. The controlling factors of environment geology in the Pearl River Delta Economic Zone and an analysis of existing problems. Geol. China 2012, 39, 539–549. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Fang, H.; He, Q.C.; Xv, B.; Wang, M.H.; Li, X. A study of risk assessment of the land subsidence in Cangzhou. Hydrogeol. Eng. Geol. 2016, 43, 159–164. [Google Scholar]
- Ao, M.S.; Wang, C.C.; Xie, R.A.; Zhang, X.Q.; Hu, J.; Du, Y.A.; Li, Z.W.; Zhu, J.J.; Dai, W.J.; Kuang, C.L. Monitoring the land subsidence with persistent scatterer interferometry in Nansha District, Guangdong, China. Nat. Hazards 2015, 75, 2947–2964. [Google Scholar] [CrossRef]
- Du, Z.Y.; Ge, L.L.; Ng, A.H.M.; Lian, X.G.; Zhu, Q.G.Z.; Horgan, F.G.; Zhang, Q. Analysis of the impact of the South-to-North water diversion project on water balance and land subsidence in Beijing, China between 2007 and 2020. J. Hydrol. 2021, 603, 126990. [Google Scholar] [CrossRef]
- Li, G.R.; Zhao, C.Y.; Wang, B.H.; Liu, X.J.; Chen, H.Y. Land Subsidence Monitoring and Dynamic Prediction of Reclaimed Islands with Multi-Temporal InSAR Techniques in Xiamen and Zhangzhou Cities, China. Remote Sens. 2022, 14, 2930. [Google Scholar] [CrossRef]
- Sun, H.M.; Peng, H.X.; Zeng, M.; Wang, S.M.; Pan, Y.J.; Pi, P.C.; Xue, Z.X.; Zhao, X.W.; Zhang, A.; Liu, F.M. Land Subsidence in a Coastal City Based on SBAS-InSAR Monitoring: A Case Study of Zhuhai, China. Remote Sens. 2023, 15, 2424. [Google Scholar] [CrossRef]
- Shi, X.L.; Chen, C.; Dai, K.R.; Deng, J.; Wen, N.L.; Yin, Y.; Dong, X.J. Monitoring and Predicting the Subsidence of Dalian Jinzhou Bay International Airport, China by Integrating InSAR Observation and Terzaghi Consolidation Theory. Remote Sens. 2022, 14, 2332. [Google Scholar] [CrossRef]
- Kim, S.W.; Wdowinski, S.; Dixon, T.H.; Amelung, F.; Won, J.S.; Kim, J.W. InSAR-based mapping of surface subsidence in Mokpo City, Korea, using JERS-1 and ENVISAT SAR data. Earth Planets Space 2008, 60, 453–461. [Google Scholar] [CrossRef]
- Amin, G.; Shahzad, M.I.; Jaweria, S.; Zia, I. Measuring land deformation in a mega city Karachi-Pakistan with sentinel SAR interferometry. Geocarto Int. 2022, 37, 4974–4993. [Google Scholar] [CrossRef]
- Gao, G.S.; San, L.H.; Zhu, Y.D. Flood Inundation Analysis in Penang Island (Malaysia) Based on InSAR Maps of Land Subsidence and Local Sea Level Scenarios. Water 2021, 13, 1518. [Google Scholar] [CrossRef]
- Liu, P.; Chen, X.F.; Li, Z.H.; Zhang, Z.G.; Xu, J.K.; Feng, W.P.; Wang, C.S.; Hu, Z.W.; Tu, W.; Li, H. Resolving Surface Displacements in Shenzhen of China from Time Series InSAR. Remote Sens. 2018, 10, 1162. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Ren, X.W.; Chen, B.; Song, S.P.; Wang, J.X.; Yang, P. Study on land subsidence under different plot ratios through centrifuge model test in soft-soil territory. Environ. Earth Sci. 2012, 66, 1809–1816. [Google Scholar] [CrossRef]
- Cui, Z.D.; Yang, J.Q.; Yuan, L. Land subsidence caused by the interaction of high-rise buildings in soft soil areas. Nat. Hazards 2015, 79, 1199–1217. [Google Scholar] [CrossRef]
- Xue, Y.Q.; Zhang, Y.; Ye, S.J.; Wu, J.C.; Li, Q.F. Land subsidence in China. Environ. Geol. 2005, 48, 713–720. [Google Scholar] [CrossRef]
- Yang, P.; Dong, Y.; Zhang, Y.; Wu, G.; Yao, Y. Research on prevention and control methods of land subsidence induced by groundwater overexploitation based on three-dimensional fluid solid coupling model—A case study of Guangrao County. Front. Earth Sci. 2023, 10, 1010134. [Google Scholar] [CrossRef]
- Dong, S.C.; Samsonov, S.; Yin, H.W.; Ye, S.J.; Cao, Y.R. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677–691. [Google Scholar] [CrossRef]
- Zhou, C.F.; Gong, H.L.; Chen, B.B.; Li, X.J.; Li, J.W.; Wang, X.; Gao, M.L.; Si, Y.; Guo, L.; Shi, M.; et al. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology 2019, 335, 48–61. [Google Scholar] [CrossRef]
Indicator | Classification and Assignment | |||||
---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | 0 | |
Soft-soil thickness (m) | >30 | 30~20 | 20~10 | 10~5 | 5~0 | 0 |
Building density | Extremely large | Large | Medium | Small | Extremely small | |
Velocity (mm/a) 1 | >−80 | −80~−40 | −40~−20 | −20~−10 | −10~0 | 0 and above |
Indicator | Classification and Assignment | ||||
---|---|---|---|---|---|
4 | 3 | 2 | 1 | 0 | |
Population density | Important villages and towns | General villages and towns | Decentralized residential areas | Cropland and fishponds | Grassland and forest |
Engineering importance | High | Medium | Low | ||
Distance from transportation and pipeline arteries (m) | >400 | 400~200 | 200~100 | 100~50 | <50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, H.; Wei, L.; Pi, P.; Zeng, M.; Pan, Y.; Xue, Z.; Jiang, X. Integrated Assessment of Coastal Subsidence in Nansha District, Guangzhou City, China: Insights from SBAS-InSAR Monitoring and Risk Evaluation. Remote Sens. 2024, 16, 248. https://doi.org/10.3390/rs16020248
Wang S, Sun H, Wei L, Pi P, Zeng M, Pan Y, Xue Z, Jiang X. Integrated Assessment of Coastal Subsidence in Nansha District, Guangzhou City, China: Insights from SBAS-InSAR Monitoring and Risk Evaluation. Remote Sensing. 2024; 16(2):248. https://doi.org/10.3390/rs16020248
Chicago/Turabian StyleWang, Simiao, Huimin Sun, Lianhuan Wei, Pengcheng Pi, Min Zeng, Yujie Pan, Zixuan Xue, and Xuehan Jiang. 2024. "Integrated Assessment of Coastal Subsidence in Nansha District, Guangzhou City, China: Insights from SBAS-InSAR Monitoring and Risk Evaluation" Remote Sensing 16, no. 2: 248. https://doi.org/10.3390/rs16020248
APA StyleWang, S., Sun, H., Wei, L., Pi, P., Zeng, M., Pan, Y., Xue, Z., & Jiang, X. (2024). Integrated Assessment of Coastal Subsidence in Nansha District, Guangzhou City, China: Insights from SBAS-InSAR Monitoring and Risk Evaluation. Remote Sensing, 16(2), 248. https://doi.org/10.3390/rs16020248