Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. GRACE and GLDAS
2.2.2. InSAR Data
2.2.3. GNSS
2.2.4. Precipitation
2.2.5. Land Cover Data
2.3. Methods
2.3.1. Obtaining Groundwater Storage via GRACE and GLDAS
2.3.2. Monitoring Land Subsidence via SBAS-InSAR
2.3.3. Similarity Analysis Based on Dynamic Time Warping
3. Results
3.1. Groundwater Storage Change in Bangladesh
3.2. Changes in Land Displacement in Bangladesh
4. Discussion
4.1. Impact of Precipitation on Groundwater Storage
4.2. Similarity Analysis of Groundwater and Land Subsidence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Smith, R.G.; Knight, R.; Chen, J.; Reeves, J.A.; Zebker, H.A.; Farr, T.; Liu, Z. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour. Res. 2017, 53, 2133–2148. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Welch, A.H.; Ahmed, K.M.; Jacks, G.; Naidu, R. Arsenic in groundwater of sedimentary aquifers. Appl. Geochem. 2004, 19, 163–167. [Google Scholar] [CrossRef]
- Rahman, A.; Jahan, S.; Yildirim, G.; Alim, M.A.; Haque, M.M.; Rahman, M.M.; Kausher, A.H.M. A Review and Analysis of Water Research, Development, and Management in Bangladesh. Water 2022, 14, 1834. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Chandler, R.E.; Taylor, R.G.; Ahmed, K.M. Recent trends in groundwater levels in a highly seasonal hydrological system: The Ganges-Brahmaputra-Meghna Delta. Hydrol. Earth Syst. Sci. 2009, 13, 2373–2385. [Google Scholar] [CrossRef]
- Knappett, P.S.K.; Mailloux, B.J.; Choudhury, I.; Khan, M.R.; Michael, H.A.; Barua, S.; Mondal, D.R.; Steckler, M.S.; Akhter, S.H.; Ahmed, K.M.; et al. Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh. J. Hydrol. 2016, 539, 674–686. [Google Scholar] [CrossRef]
- Steckler, M.S.; Oryan, B.; Wilson, C.A.; Grall, C.; Nooner, S.L.; Mondal, D.R.; Akhter, S.H.; DeWolf, S.; Goodbred, S.L. Synthesis of the distribution of subsidence of the lower Ganges-Brahmaputra Delta, Bangladesh. Earth-Sci. Rev. 2022, 224, 103887. [Google Scholar] [CrossRef]
- Brown, S.; Nicholls, R.J. Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. Sci. Total Environ. 2015, 527, 362–374. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Roy, S.K.; Zahid, A. Assessment of declining groundwater levels due to excessive pumping in the Dhaka District of Bangladesh. Environ. Earth Sci. 2021, 80, 333. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Chen, M.; Tomas, R.; Li, Z.; Motagh, M.; Li, T.; Hu, L.; Gong, H.; Li, X.; Yu, J.; Gong, X. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry. Remote Sens. 2016, 8, 468. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, 169–178. [Google Scholar] [CrossRef]
- Higgins, S.A.; Overeem, I.; Steckler, M.S.; Syvitski, J.P.M.; Seeber, L.; Akhter, S.H. InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh. J. Geophys. Res.-Earth Surf. 2014, 119, 1768–1781. [Google Scholar] [CrossRef]
- Chatterjee, R.S.; Fruneau, B.; Rudant, J.P.; Roy, P.S.; Frison, P.L.; Lakhera, R.C.; Dadhwal, V.K.; Saha, R. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote Sens. Environ. 2006, 102, 176–185. [Google Scholar] [CrossRef]
- Sarker, M.S.; Kamal, A.S.M.M.; Rahman, M.Z.; Fahim, A.K.F. Land subsidence monitoring using InSAR technique in the southwestern region of Bangladesh. Geomat. Nat. Hazards Risk 2024, 15, 2333795. [Google Scholar] [CrossRef]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef]
- Wegnuller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. In Proceedings of the International Conference on ENTERprise Information Systems/International Conference on Project MANagement/International Conference on Health and Social Care Information Systems and Technologies (CENTERIS/ProjMAN/HCist), Porto, Portugal, 5–7 October 2016; pp. 1305–1312. [Google Scholar]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resour. Res. 2012, 48, 1–12. [Google Scholar] [CrossRef]
- Castellazzi, P.; Martel, R.; Rivera, A.; Huang, J.; Pavlic, G.; Calderhead, A.I.; Chaussard, E.; Garfias, J.; Salas, J. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resour. Res. 2016, 52, 5985–6003. [Google Scholar] [CrossRef]
- Agarwal, V.; Kumar, A.; Gomes, R.L.; Marsh, S. Monitoring of Ground Movement and Groundwater Changes in London Using InSAR and GRACE. Appl. Sci.-Basel 2020, 10, 8599. [Google Scholar] [CrossRef]
- Sorkhabi, O.M.; Kurdpour, I.; Sarteshnizi, R.E. Land subsidence and groundwater storage investigation with multi sensor and extended Kalman filter. Groundw. Sustain. Dev. 2022, 19, 100859. [Google Scholar] [CrossRef]
- Gong, H.; Pan, Y.; Zheng, L.; Li, X.; Zhu, L.; Zhang, C.; Huang, Z.; Li, Z.; Wang, H.; Zhou, C. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef]
- Adem, E.; Shults, R.; Ukasha, M.; Elfeki, A.; Alqahtani, F.; Elhag, M. Land subsidence and groundwater storage change assessment using InSAR and GRACE in the arid environment of Saudi Arabia. Nat. Hazards 2024, 120, 1–23. [Google Scholar] [CrossRef]
- Sarmin, F.J.; Zaman, M.S.U.; Sarkar, A.R. Monitoring land deformation due to groundwater extraction using Sentinel-1 satellite images: A case study from Chapai Nawabgonj, Bangladesh. In Proceedings of the 23rd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 19–21 December 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Steckler, M.S.; Nooner, S.L.; Akhter, S.H.; Chowdhury, S.K.; Bettadpur, S.; Seeber, L.; Kogan, M.G. Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J. Geophys. Res.-Solid Earth 2010, 115, 1–18. [Google Scholar] [CrossRef]
- Michael, H.A.; Voss, C.I. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis. Hydrogeol. J. 2009, 17, 1561–1577. [Google Scholar] [CrossRef]
- Persits, F.M.; Wandrey, C.J.; Milici, R.C.; Manwar, A. Digital Geologic and Geophysical Data of Bangladesh: U.S. Geological Survey Open-File Report 97-470-H; U.S. Geological Survey: Reston, VA, USA, 2001. [CrossRef]
- Hossain, A.; Hossain, D.; Abdullah, R. Structural and Stratigraphic Interpretation of Geophysical Data of the Fenchuganj Gas Field in the Surma Basin, Bangladesh. J. Geol. Soc. India 2015, 86, 148–154. [Google Scholar] [CrossRef]
- Hossain, F.; Bagtzoglou, A.C.; Nahap, N.; Hossain, M.D. Statistical characterization of arsenic contamination in shallow tube wells of western Bangladesh. Hydrol. Process. 2006, 20, 1497–1510. [Google Scholar] [CrossRef]
- Lakshmi, B.V.; Gawali, P.B. Soft sediment deformation features in Dauki Fault region: Evidence of paleoearthquakes, Shillong Plateau, NE India. Environ. Earth Sci. 2022, 81, 58. [Google Scholar] [CrossRef]
- Alam, M.G.M.; Allinson, G.; Stagnitti, F.; Tanaka, A.; Westbrooke, M. Arsenic contamination in Bangladesh groundwater: A major environmental and social disaster. Int. J. Environ. Health Res. 2002, 12, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Shamsudduha, M.; Taylor, R.G.; Ahmed, K.M.; Zahid, A. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: Evidence from Bangladesh. Hydrogeol. J. 2011, 19, 901–916. [Google Scholar] [CrossRef]
- Steckler, M.S.; Jaman, M.H.; Grall, C.J.; Goodbred, S.L.; Wilson, C.A.; Oryan, B. Contribution of campaign GNSS toward parsing subsidence rates by time and depth in coastal Bangladesh. Front. Earth Sci. 2024, 12, 1354686. [Google Scholar] [CrossRef]
- Majumder, R.K.; Halim, M.A.; Saha, B.B.; Ikawa, R.; Nakamura, T.; Kagabu, M.; Shimada, J. Groundwater flow system in Bengal Delta, Bangladesh revealed by environmental isotopes. Environ. Earth Sci. 2011, 64, 1343–1352. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res.-Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Loomis, B.D.; Luthcke, S.B.; Sabaka, T.J. Regularization and error characterization of GRACE mascons. J. Geod. 2019, 93, 1381–1398. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Zhang, L.; Wenke, S. Progress and prospect of GRACE Mascon product and its application. Rev. Geophys. Planet. Phys. 2022, 53, 35–52. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Morishita, Y. Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS. Prog. Earth Planet. Sci. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Li, M.; Chen, W.; Chen, X.; Chen, S. Extraction of water areas based on similarity analysis using pixel-level SAR image time series. Remote Sens. Land Resour. 2014, 26, 67–73. [Google Scholar]
- Salvadora, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580. [Google Scholar] [CrossRef]
- Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Li, F.J.; Ren, J.Q.; Wu, S.R.; Zhao, H.W.; Zhang, N.D. Comparison of Regional Winter Wheat Mapping Results from Different Similarity Measurement Indicators of NDVI Time Series and Their Optimized Thresholds. Remote Sens. 2021, 13, 1162. [Google Scholar] [CrossRef]
- Lines, J.; Bagnall, A. Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Discov. 2015, 29, 565–592. [Google Scholar] [CrossRef]
- Asoka, A.; Wada, Y.; Fishman, R.; Mishra, V. Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India. Geophys. Res. Lett. 2018, 45, 5536–5544. [Google Scholar] [CrossRef]
- Thomas, B.F.; Behrangi, A.; Famiglietti, J.S. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water 2016, 8, 90. [Google Scholar] [CrossRef]
- Mullick, M.R.A.; Nur, R.M.; Alam, M.J.; Islam, K.M.A. Observed trends in temperature and rainfall in Bangladesh using pre-whitening approach. Glob. Planet. Chang. 2019, 172, 104–113. [Google Scholar] [CrossRef]
- Shahid, S. Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Climatol. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- Ezaz, G.T.; Zhang, K.; Li, X.; Shalehy, M.H.; Hossain, M.A.; Liu, L.X. Spatiotemporal changes of precipitation extremes in Bangladesh during 1987–2017 and their connections with climate changes, climate oscillations, and monsoon dynamics. Glob. Planet. Chang. 2022, 208, 103712. [Google Scholar] [CrossRef]
- Hasan, M.H.; Kadir, S.B. Social Assessment of Community Resilience to Earthquake in Old Dhaka. Nat. Hazards Rev. 2020, 21, 05020004. [Google Scholar] [CrossRef]
Frame ID | Date | Period (Year) | Products | |
---|---|---|---|---|
Start | End | |||
012A_06687_181919 | 2020.11.27 | 2023.04.30 | 2.4 | 1364 |
012A_06441_131313 | 2015.12.12 | 2020.07.24 | 4.6 | 386 |
114A_06391_131313 | 2014.10.25 | 2023.08.15 | 8.8 | 635 |
041A_06628_131313 | 2014.10.08 | 2023.11.26 | 9.1 | 1657 |
114A_06590_131313 | 2014.10.25 | 2023.12.01 | 9.1 | 1611 |
114A_06765_080913 | 2015.04.11 | 2023.06.28 | 8.2 | 1227 |
041A_06428_131313 | 2014.10.08 | 2023.11.26 | 9.1 | 699 |
041A_06828_131313 | 2014.10.08 | 2023.10.21 | 9 | 1848 |
Data | Data Source | Spatial Resolution | Temporal Resolution | Date | ||
---|---|---|---|---|---|---|
Original | Processed | Original | Processed | |||
GRACE | CSR | 0.25° | 0.25° | Monthly | Monthly | 2014–2023 |
JPL | 0.5° | 0.25° | 2014–2023 | |||
GSFC | 0.5° | 0.25° | 2014–2023 | |||
GLDAS | GEE | 0.25° | 0.25° | Monthly | Monthly | 2014–2023 |
InSAR | COMET-LiCS | ~100 m | \ | 24 d/12 d | Monthly | 2014–2023 |
GNSS | NGL | \ | \ | 24 h | \ | 2018–2021 |
Land Cover | Sentinel-2 Dynamic World | 10 m | \ | 2–5 d | Annual | 2015–2023 |
Precipitation | CPCC | 1° | 0.25° | Monthly | Monthly | 2014–2023 |
GNSS Station | InSAR | GNSS | Difference (mm/year) | RMSE (mm) |
---|---|---|---|---|
VLKA (Mymensingh) | −12.48 | −11.43 | −1.05 | 2.92 |
DHA2 (Dhaka) | −6.21 | −15.22 | 9.01 | 9.69 |
COML (Comilla) | −6.93 | −3.41 | −3.52 | 7.31 |
BNTL (Khulna) | −11.92 | −7.9 | −4.02 | 14.06 |
BNGM (Rangpur) | −1.05 | −3.16 | 2.11 | 3.44 |
Area | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
Similarity coefficient | 0.8705 | 0.9171 | 0.9055 | 0.8507 | 0.8997 | 0.8668 |
Lag time (month) | 2.25 | 5.24 | 2.14 | 5.47 | 5.54 | 2.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, L.; Zhao, Z.; Zhou, D.; Cao, J.; Qin, J.; Cao, Y.; He, Y. Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR. Remote Sens. 2024, 16, 3715. https://doi.org/10.3390/rs16193715
Ouyang L, Zhao Z, Zhou D, Cao J, Qin J, Cao Y, He Y. Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR. Remote Sensing. 2024; 16(19):3715. https://doi.org/10.3390/rs16193715
Chicago/Turabian StyleOuyang, Liu, Zhifang Zhao, Dingyi Zhou, Jingyao Cao, Jingyi Qin, Yifan Cao, and Yang He. 2024. "Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR" Remote Sensing 16, no. 19: 3715. https://doi.org/10.3390/rs16193715
APA StyleOuyang, L., Zhao, Z., Zhou, D., Cao, J., Qin, J., Cao, Y., & He, Y. (2024). Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR. Remote Sensing, 16(19), 3715. https://doi.org/10.3390/rs16193715