Discovering the Ecosystem Service Value Growth Characteristics of a Subtropical Soil Erosion Area Using a Remote-Sensing-Driven Mountainous Equivalent Factor Method
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
3. Methods
3.1. Data Processing
3.2. ESV Calculation
- (1)
- Standard equivalent factor
- (2)
- Equivalent coefficients
- (3)
- Land use classification for mountains
- (4)
- Spatial adjustment coefficient modification
- (5)
- ESV calculation improvement
3.3. ESV Analysis
4. Results
4.1. Land Use Change
4.2. Spatial Adjustment Coefficients
4.3. ESV Comparison
4.4. ESV Distribution Characteristics
5. Discussion
5.1. ESV Changes in Changting County and Their Underlying Factors
5.2. Advantages and Disadvantages of Employing the RS-MEF Method for the Valuation of Ecosystem Services
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Robinson, D.A.; Fraser, I.; Dominati, E.J.; Davísdóttir, B.; Jónsson, J.O.G.; Jones, L.; Jones, S.B.; Tuller, M.; Lebron, I.; Bristow, K.L.; et al. On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Sci. Soc. Am. J. 2014, 78, 685–700. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Wellbeing: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; d’Arge, R.; deGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Rao, E. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Braat, L.C.; De Groot, R. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef]
- Torres, A.V.; Tiwari, C.; Atkinson, S.F. Progress in ecosystem services research: A guide for scholars and practitioners. Ecosyst. Serv. 2021, 49, 101267. [Google Scholar] [CrossRef]
- Jiang, W. Ecosystem services research in China: A critical review. Ecosyst. Serv. 2017, 26, 10–16. [Google Scholar] [CrossRef]
- Costanza, R.; deGroot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Porfirio, L. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Zhang, D.; Min, Q.; Liu, M.; Cheng, S. Ecosystem service tradeoff between traditional and modern agriculture: A case study in Congjiang County, Guizhou Province, China. Front. Environ. Sci. Eng. 2012, 6, 743–752. [Google Scholar] [CrossRef]
- Wen, L.; Dong, S.; Li, Y.; Li, X.; Shi, J.; Wang, Y.; Ma, Y. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE 2013, 8, e58432. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Cheng, L. Ecological assets valuation of the Tibetan Plateau. J. Nat. Res. 2003, 18, 189–196. [Google Scholar]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Das, A.; Das, M.; Houqe, R.; Pereira, P. Mapping ecosystem services for ecological planning and management: A case from a tropical planning region, Eastern India. Environ. Sci. Pollut. Res. 2023, 30, 7543–7560. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Gao, F.; Cui, J.; Zhang, S.; Xin, X.; Zhang, S.; Zhou, J.; Zhang, Y. Spatio-temporal distribution and driving factors of ecosystem service value in a fragile hilly area of north China. Land 2022, 11, 2242. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.Z.; Lin, W.X. Evaluation of ecosystem services value and its implications for policy making in China–A case study of Fujian province. Ecol. Indic. 2020, 108, 105752. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Liu, Y.; Zhang, F.; Zhang, M. Response of ecosystem services to land use and cover change: A case study in Chengdu City. Resour. Conserv. Recycl. 2018, 132, 291–300. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Wang, X. Spatial correction of ecosystem service value and the evaluation of eco-efficiency: A case for China’s provincial level. Ecol. Indic. 2018, 95, 841–850. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, S.; Yang, J.; Bu, K.; Wang, Q.; Tang, J.; Chang, L. The effects of population density changes on ecosystem services value: A case study in Western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, M.; Xie, G.; Zhen, L. Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the Hunshandake region of China. Sci. Total Environ. 2022, 850, 158067. [Google Scholar] [CrossRef]
- Feng, X.; Huang, H.; Wang, Y.; Tian, Y.; Li, L. Identification of ecological sources using ecosystem service value and vegetation productivity indicators: A case study of the Three-River Headwaters Region, Qinghai–Tibetan Plateau, China. Remote Sens. 2024, 16, 1258. [Google Scholar] [CrossRef]
- Fu, Y.; Xiong, K.; Zhang, Z. Ecosystem services and ecological compensation of world heritage: A literature review. J. Nat. Conserv. 2021, 60, 125968. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Shen, H.; Zhang, L. A general variational framework considering cast shadows for the topographic correction of remote sensing imagery. ISPRS J. Photogramm. 2016, 117, 161–171. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, A.; Wu, Y.; Zhang, C.; Chi, Z.; Li, M.; Wang, X. Vegetation monitoring for mountainous regions using a new integrated topographic correction (ITC) of the SCS + C Correction and the shadow-eliminated vegetation index. Remote Sens. 2022, 14, 3073. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing land surface anisotropic reflectance over rugged terrain: A review of concepts and recent developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, S.; Cao, X.; Yang, C.; Zhang, Z.; Wang, X. A shadow-eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains. Int. J. Digit. Earth 2019, 12, 1013–1029. [Google Scholar] [CrossRef]
- Yang, X.; Zuo, X.; Xie, W.; Li, Y.; Guo, S.; Zhang, H. A correction method of NDVI topographic shadow effect for rugged terrain. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 8456–8472. [Google Scholar] [CrossRef]
- Chen, S.; Zha, X.; Bai, Y.; Wang, L. Evaluation of soil erosion vulnerability on the basis of exposure, sensitivity, and adaptive capacity: A case study in the Zhuxi watershed, Changting, Fujian Province, Southern China. Catena 2019, 177, 57–69. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, C.; Yu, J.; Zhai, L.; Zhang, H.; Yang, K.; Hou, X. Ecological vulnerability in the red soil erosion area of Changting under continuous ecological restoration: Spatiotemporal dynamic evolution and prediction. Forests 2022, 13, 2136. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Zhang, Y. Cost-effective targeting soil and water conservation: A case study of Changting county in southeast China. Land Degrad. Dev. 2016, 27, 387–394. [Google Scholar] [CrossRef]
- Jiang, H.; Yao, M.; Guo, J.; Zhang, Z.; Wu, W.; Mao, Z. Vegetation monitoring of protected areas in rugged mountains using an improved shadow-eliminated vegetation index (SEVI). Remote Sens. 2022, 14, 882. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Person Education: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Jiang, H.; Zhang, Y.; Lin, J.; Zheng, X.; Yue, H.; Chen, Y. Developing a new red band–SEVI–blue band (RSB) enhancement method for recognition the extra-high-voltage transmission line corridor in green mountains. Int. J. Digit. Earth 2023, 16, 806–824. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Melo, F.P.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Xia, C.; Yue, H.; Ma, H.; Lin, G. Targeted control measures for ecological restoration in Western Fujian, China. Land Use Policy 2018, 76, 186–192. [Google Scholar] [CrossRef]
- Lin, C.; Zhou, S.L.; Wu, S.H.; Liao, F.Q. Relationships between intensity gradation and evolution of soil erosion: A case study of Changting in Fujian Province, China. Pedosphere 2012, 22, 243–253. [Google Scholar] [CrossRef]
- Yu, D.; Li, Y.; Yin, B.; Wu, N.; Ye, R.; Liu, G. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe. Glob. Ecol. Conserv. 2022, 33, e01991. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, S.; Wang, F.; Liu, H.; Liu, Y.; Wang, Q. Cost-benefit analysis of ecological restoration based on land use scenario simulation and ecosystem service on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02006. [Google Scholar] [CrossRef]
Data | Resolution | Data Source |
---|---|---|
Landsat images | 30 m | http://www.gscloud.cn/ (accessed on 26 October 2023) |
Digital elevation model | 30 m | |
Net primary productivity | 500 m | https://lpdaac.usgs.gov/product_search/ (accessed on 26 May 2024) |
UAV images | 4 cm | Field survey |
Crop sown area and production | — | Changting Statistical Yearbook 2023 |
Crop price | — | Compilation of National Agricultural Cost–Benefit Data 2023 |
Equivalent coefficients | — | Xie et al., 2017 [19] |
Ecosystem Services | Farm | Grass | Forest | Construction Land | Unused Land | Water | |||
---|---|---|---|---|---|---|---|---|---|
Primary | Secondary | Coniferous | Broad-Leaved | Mixed | |||||
Provisioning services | Food | 1.36 | 0.38 | 0.22 | 0.29 | 0.31 | 0 | 0 | 0.80 |
Materials | 0.09 | 0.56 | 0.52 | 0.66 | 0.71 | 0 | 0 | 0.23 | |
Water | −2.63 | 0.31 | 0.27 | 0.34 | 0.37 | 0 | 0 | 8.29 | |
Regulating services | Air quality | 1.11 | 1.97 | 1.70 | 2.17 | 2.35 | 0 | 0.02 | 0.77 |
Climate | 0.57 | 5.21 | 5.07 | 6.50 | 7.03 | 0 | 0 | 2.29 | |
Waste treatment | 0.17 | 1.72 | 1.49 | 1.93 | 1.99 | 0 | 0.10 | 5.55 | |
Hydrological | 2.72 | 3.82 | 3.34 | 4.74 | 3.51 | 0 | 0.03 | 102.24 | |
Supporting services | Erosion prevention | 0.01 | 2.40 | 2.06 | 2.65 | 2.86 | 0 | 0.02 | 0.93 |
Maintenance of soil fertility | 0.19 | 0.18 | 0.16 | 0.20 | 0.22 | 0 | 0 | 0.07 | |
Biodiversity protection | 0.21 | 2.18 | 1.88 | 2.41 | 2.60 | 0 | 0.02 | 2.55 | |
Cultural services | Esthetic landscape | 0.09 | 0.96 | 0.82 | 1.06 | 1.14 | 0 | 0.01 | 1.89 |
Land Use | Landsat 9 OLI | Field Photo | Google EARTH |
---|---|---|---|
Coniferous forest | |||
Broad-leaved forest | |||
Mixed forest | |||
Grassland | |||
Farmland | |||
Construction land | |||
Unused land | |||
Water |
Grade | Elevation (m) | Slope (°) | Relief Amplitude (m) | Terrain Niche |
---|---|---|---|---|
I | ≤385 | ≤8.62 | ≤15 | ≤0.09 |
II | 385~513 | 8.62~13.61 | 15~22 | 0.09~0.32 |
III | 513~658 | 13.61~18.64 | 22~29 | 0.32~0.47 |
IV | 658~854 | 18.64~24.92 | 29~39 | 0.47~0.63 |
V | >854 | >24.92 | >39 | >0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Lin, J.; Liu, B.; Yue, H.; Lin, J.; Shui, W.; Gao, M.; Chen, Y. Discovering the Ecosystem Service Value Growth Characteristics of a Subtropical Soil Erosion Area Using a Remote-Sensing-Driven Mountainous Equivalent Factor Method. Remote Sens. 2024, 16, 3700. https://doi.org/10.3390/rs16193700
Jiang H, Lin J, Liu B, Yue H, Lin J, Shui W, Gao M, Chen Y. Discovering the Ecosystem Service Value Growth Characteristics of a Subtropical Soil Erosion Area Using a Remote-Sensing-Driven Mountainous Equivalent Factor Method. Remote Sensing. 2024; 16(19):3700. https://doi.org/10.3390/rs16193700
Chicago/Turabian StyleJiang, Hong, Jing Lin, Bibao Liu, Hui Yue, Jinglan Lin, Wei Shui, Ming Gao, and Yunzhi Chen. 2024. "Discovering the Ecosystem Service Value Growth Characteristics of a Subtropical Soil Erosion Area Using a Remote-Sensing-Driven Mountainous Equivalent Factor Method" Remote Sensing 16, no. 19: 3700. https://doi.org/10.3390/rs16193700
APA StyleJiang, H., Lin, J., Liu, B., Yue, H., Lin, J., Shui, W., Gao, M., & Chen, Y. (2024). Discovering the Ecosystem Service Value Growth Characteristics of a Subtropical Soil Erosion Area Using a Remote-Sensing-Driven Mountainous Equivalent Factor Method. Remote Sensing, 16(19), 3700. https://doi.org/10.3390/rs16193700