Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023
Abstract
:1. Introduction
2. Data and Model
2.1. TIMED/SABER Satellite Observations
2.2. TIEGCM Simulation
2.3. Overview of the Geomagnetic Storm Event
3. Results and Discussion
3.1. Global Distribution of NO Emission Response during the Geomagnetic Storm
3.2. Effects of Variations in Three Parameters during the Geomagnetic Storm on the Response of NO Emission
4. Conclusions
- (1)
- Both the observed and the simulated NO emissions significantly increase during the geomagnetic storm. Furthermore, the enhancement depends on latitude and altitude.
- (2)
- Observational results show that NO emission exhibits asymmetric distributions during both the geomagnetic quiet period and the geomagnetic storm period, regardless of whether they are in the Southern or the Northern Hemisphere or on the dayside or nightside. During the storm, the peak altitude of NO emission in the Northern Hemisphere is approximately 2–10 km higher than in the Southern Hemisphere. Additionally, the peak emission on the nightside is stronger than that on the dayside, and the peak altitude on the dayside is about 2–8 km higher than that on the nightside. The NO emission enhancement extends from near 50° latitude towards the equator, with a stronger response on the nightside.
- (3)
- There are differences between the simulated and observed altitude–latitude distributions of NO emissions. Simulated emission around the equator is strong compared with that at higher latitudes, especially on the dayside, during both the geomagnetic quiet period and the geomagnetic storm period. In addition, the simulated emission on the dayside is stronger than that on the nightside. This is contrary to the observations, which show weak emission around the equator. However, the altitude–latitude distribution structure of relative variation in NO emission is generally similar between simulations and observations, with enhancement peaks around 50°S/N and the peak enhancement on the nightside being generally stronger than that on the dayside.
- (4)
- The intensity of NO emission is closely related to NO density, O density, and temperature. The simulation results indicate that changes in NO density and temperature during the geomagnetic storm lead to an increase in NO emission at most latitudes and altitudes. Changes in O density result in decreased NO emission north of approximately 35°N and increased emission south of 35°N. The simulation results suggest that the peak enhancements of NO emission around 50°S/N can be mainly attributed to changes in NO density.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Richmond, A.D.; Lu, G. Upper-atmospheric effects of magnetic storms: A brief tutorial. J. Atmos. Sol. Terr. Phys. 2000, 62, 1115–1127. [Google Scholar] [CrossRef]
- Burns, A.; Killeen, T.; Deng, W.; Carignan, G.; Roble, R. Geomagnetic Storm Effects in the Low-Latitude to Middle-Latitude Upper Thermosphere. J. Geophys. Res. Space Phys. 1995, 100, 14673–14691. [Google Scholar] [CrossRef]
- Kockarts, G. Nitric oxide cooling in the terrestrial thermosphere. Geophys. Res. Lett. 1980, 7, 137–140. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C.; Dickinson, R.E. On the global mean structure of the thermosphere. J. Geophys. Res. Space Phys. 1987, 92, 8745–8758. [Google Scholar] [CrossRef]
- Lei, J.; Burns, A.G.; Thayer, J.P.; Wang, W.B.; Mlynczak, M.G.; Hunt, L.A.; Dou, X.K.; Sutton, E. Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. J. Geophys. Res. Atmos. 2012, 117, A03314. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Martine-Torres, F.J.; Russell, J.; Jacobson, S.; Kozyra, J.; Lopez-Puertas, M.; Funke, B.; Mertens, C.; Gordley, L.; Picard, R.; et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 2003, 30, 2100. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Martin-Torres, F.J.; Crowley, G.; Kratz, D.P.; Funke, B.; Lu, G.; Lopez-Puertas, M.; Russell, J.M., III; Kozyra, J.; Mertens, C.; et al. Energy transport in the thermosphere during the solar storms of April 2002. J. Geophys. Res. Space Phys. 2005, 110, A12S25. [Google Scholar] [CrossRef]
- Barth, C.A. Nitric oxide in the lower thermosphere. Planet. Space Sci. 1992, 40, 315–336. [Google Scholar] [CrossRef]
- Sharma, R.D.; Dothe, H.; Duff, J.W. Model of the 5.3 μm radiance from NO during the sunlit terrestrial thermosphere. J. Geophys. Res. Space Phys. 1998, 103, 14753–14768. [Google Scholar] [CrossRef]
- Dobbin, A.L.; Aylward, A.D.; Harris, M.J. Three-dimensional GCM modeling of nitric oxide in the lower thermosphere. J. Geophys. Res. Space Phys. 2006, 111, A07314. [Google Scholar] [CrossRef]
- Dobbin, A.L.; Griffin, E.M.; Aylward, A.D.; Millward, G.H. 3-D GCM Modelling of Thermospheric Nitric Oxide during the 2003 Halloween Storm. Ann. Geophys. 2006, 24, 2403–2412. [Google Scholar] [CrossRef]
- Siskind, D.E.; Barth, C.A.; Roble, R.G. The response of thermospheric nitric oxide to an auroral storm: 1. Low and middle latitudes. J. Geophys. Res. Space Phys. 1989, 94, 16885–16898. [Google Scholar]
- Roble, R.G.; Ridley, E.C.; Richmond, A.D.; Dickinson, R.E. A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 1988, 15, 1325–1328. [Google Scholar] [CrossRef]
- Bag, T. Local Time Hemispheric Asymmetry in Nitric Oxide Radiative Emission During Geomagnetic Activity. J. Geophys. Res-Space Phys. 2018, 123, 9669–9681. [Google Scholar] [CrossRef]
- Bailey, S.M.; Barth, C.A.; Solomon, S.C. A model of nitric oxide in the lower thermosphere. J. Geophys. Res. Space Phys. 2002, 107, SIA 22-1–SIA 22-12. [Google Scholar] [CrossRef]
- Barth, C.A.; Lu, G.; Roble, R.G. Joule heating and nitric oxide in the thermosphere. J. Geophys. Res. Space Phys. 2009, 114, A05301. [Google Scholar] [CrossRef]
- Barth, C.A. Joule heating and nitric oxide in the thermosphere, 2. J. Geophys. Res. Space Phys. 2010, 115, A10305. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W. Understanding the behaviors of thermospheric nitric oxide cooling during the 15 May 2005 geomagnetic storm. J. Geophys. Res. Space Phys. 2019, 124, 2113–2126. [Google Scholar] [CrossRef]
- Caledonia, G.E.; Kennealy, J.P. NO infrared emission in the upper atmosphere. Planet. Space Sci. 1982, 30, 1043–1056. [Google Scholar] [CrossRef]
- Sharma, R.; Dothe, H.; Esse, F.V.; Kharchenko, V.A.; Sun, Y.; Dalgarno, A. Production of vibrationally and rotationally excited NO in the night time terrestrial thermosphere. J. Geophys. Res. Space Phys. 1996, 101, 19707–19713. [Google Scholar]
- Hendrickx, K.; Megner, L.; Daniel, R.; Marsh Gumbel, J.; Strandberg, R.; Martinsson, F. Relative Importance of Nitric Oxide Physical Drivers in the Lower Thermosphere. Geophys. Res. Lett. 2017, 44, 10081–10087. [Google Scholar] [CrossRef]
- Lu, G.; Mlynczak, M.G.; Hunt, L.A.; Woods, T.N.; Roble, R.G. On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res. Space Phys. 2010, 115, A05306. [Google Scholar] [CrossRef]
- Lei, J.; Thayer, J.P.; Lu, G.; Burns, A.G.; Wang, W.B.; Sutton, E.K.; Emery, B.A. Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. J. Geophys. Res. 2011, 116, A03306. [Google Scholar] [CrossRef]
- Sheng, C.; Lu, G.; Solomon, S.C.; Wang, W.B.; Doornbos, E.; Hunt, L.A.; Mlynczak, M.G. Thermospheric recovery during the 5 April 2010 geomagnetic storm. J. Geophys. Res. Space Phys. 2017, 122, 4588–4599. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W.B.; Sheng, C.; Qian, L.Y.; Flynn, S. A Comparison Study of NO Cooling Between TIMED/SABER Measurements and TIEGCM Simulations. J. Geophys. Res. Space Phys. 2018, 123, 8714–8729. [Google Scholar] [CrossRef]
- Bharti, G.; SunilKrishna, M.V.; Bar, T.; Jain, P. Storm Time Variation of Radiative Cooling by Nitric Oxide as Observed by TIMED-SABER and GUVI. J. Geophys. Res. Space Phys. 2018, 123, 1500–1514. [Google Scholar] [CrossRef]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.J., Jr.; Esplin, R.W. An Overview of the SABER Experiment and Preliminary Calibration Results. Proc. SPIE 1999, 3756, 277–288. [Google Scholar]
- Richmond, A.D. Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 1995, 47, 191–212. [Google Scholar] [CrossRef]
- Wang, W.; Burns, A.G.; Wiltberger, M.; Solomon, S.C.; Killeen, T.L. Altitude variations of the horizontal thermospheric winds during geomagnetic storms. J. Geophys. Res. Space Phys. 2008, 113, A02301. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.; Emery, B.; Foster, B.; Lu, G.; Maute, A.; Richmond, A.; Roble, R.G.; Solomon, S.; Wang, W. The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. Geophys. Monogr. Ser. 2013, 201, 73–83. [Google Scholar]
- Mlynczak, M.G.; Hunt, L.A.; Thomas Marshall, B.; Martin-Torres, F.J.; Mertens, C.J.; Russell, J.M., III; Remsberg, E.E.; López-Puertas, M.; Picard, R.; Winick, J.; et al. Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res. 2010, 115, A03309. [Google Scholar] [CrossRef]
- Roble, R.G. Energetics of the Mesosphere and Thermosphere; Johnson, R.M., Killeen, T.L., Eds.; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1995; Volume 87, pp. 1–22. [Google Scholar]
- Bates, D.R. The Temperature of the Upper Atmosphere. Proc. Phys. Soc. Sect. B 1951, 64, 805–821. [Google Scholar] [CrossRef]
- Hagan, M.E.; Burrage, M.D.; Forbes, J.M.; Hackney, J.; Randel, W.J.; Zhang, X. GSWM-98: Results for migrating solar tides. J. Geophys. Res. 1999, 104, 6813–6827. [Google Scholar] [CrossRef]
- Murphy, R.E.; Lee, E.T.P.; Hart, A.M. Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen. J. Chem. Phys. 1975, 63, 2919–2925. [Google Scholar] [CrossRef]
- Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. Space Phys. 2005, 110, A05306. [Google Scholar] [CrossRef]
- Li, Z.; Sun, M.; Li, J.Y.; Zhang, K.D.; Zhang, H.; Xu, X.J.; Zhao, X.H. Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015. Universe 2022, 8, 236. [Google Scholar] [CrossRef]
- Solomon, S.C.; Barth, C.A.; Bailey, S.M. Auroral production of nitric oxide measured by the SNOE satellite. Geophys. Res. Lett. 1999, 26, 1259–1262. [Google Scholar] [CrossRef]
- Ren, Z.P.; Wan, W.X.; Liu, L.B. GCITEM-IGGCAS: A new global coupled ionosphere–thermosphere-electrodynamics model. J. Atmos. Sol. Terr. Phys. 2009, 71, 2064–2076. [Google Scholar] [CrossRef]
- Richards, P.G. On the increases in nitric oxide density at midlatitudes during ionospheric storms. J. Geophys. Res. Space Phys. 2004, 109, A06304. [Google Scholar] [CrossRef]
- Crowley, G.; Emery, B.A.; Roble, R.G.; Carlson, H.C., Jr.; Knipp, D.J. Thermospheric dynamics during September 18–19, 1984, 1. Model simulations. J. Geophys. Res. 1989, 94, 16925–16944. [Google Scholar]
- Bag, T.; Singh, V.; Krishna, M.V.S. Study of atomic oxygen greenline dayglow emission in thermosphere during geomagnetic storm conditions. Adv. Space Res. 2017, 59, 302–310. [Google Scholar] [CrossRef]
- Lyon, J.G.; Fedder, J.A.; Mobarry, C.M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol. Terr. Phys. 2004, 66, 1333–1350. [Google Scholar] [CrossRef]
- Merkin, V.G.; Lyon, J.G. Effects of the low-latitude ionospheric boundary condition on the global magnetosphere. J. Geophys. Res. 2010, 115, A10202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Gao, H.; Li, Z.; Xu, J.; Bai, W.; Sun, L.; Li, Z. Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023. Remote Sens. 2024, 16, 3683. https://doi.org/10.3390/rs16193683
Liu H, Gao H, Li Z, Xu J, Bai W, Sun L, Li Z. Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023. Remote Sensing. 2024; 16(19):3683. https://doi.org/10.3390/rs16193683
Chicago/Turabian StyleLiu, Hongshan, Hong Gao, Zheng Li, Jiyao Xu, Weihua Bai, Longchang Sun, and Zhongmu Li. 2024. "Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023" Remote Sensing 16, no. 19: 3683. https://doi.org/10.3390/rs16193683
APA StyleLiu, H., Gao, H., Li, Z., Xu, J., Bai, W., Sun, L., & Li, Z. (2024). Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023. Remote Sensing, 16(19), 3683. https://doi.org/10.3390/rs16193683