Tracking the Development of Lit Fisheries by Using DMSP/OLS Data in the Open South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. DMSP/OLS and Environmental Data
2.2. Identification of Luminosity Pixels
2.3. Lit Fisheries’ Habitat Model Construction
3. Results
3.1. Rise and Fall of Fishing Activities
3.2. MaxEnt Model Results
3.3. Environmental Preference of Lit Fisheries
4. Discussion
4.1. Using DMSP to Detect Lit Fishing Boats
4.2. Development of Lit Fishing in SCS
4.3. Factors Shaping Distribution of Fishing Operations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, L.; Chen, Y.; Dong, S.; Hanson, A.; Huang, B.O.; Leadbitter, D.; Little, D.C.; Pikitch, E.K.; Qiu, Y.; Mitcheson, Y.S.; et al. Opportunity for marine fisheries reform in China. Proc. Natl. Acad. Sci. USA 2017, 114, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, S.; Qiu, Y.; Lin, Z.; Jia, X. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 2009, 100, 222–229. [Google Scholar] [CrossRef]
- Zhang, K.; Geng, P.; Li, J.; Xu, Y.; Kalhoro, M.A.; Sun, M.; Shi, D.; Chen, Z. Influences of fisheries management measures on biological characteristics of threadfin bream (Nemipterus virgatus) in the Beibu Gulf, South China Sea. Acta Oceanol. 2022, 41, 24–33. [Google Scholar] [CrossRef]
- Chen, X.; Liu, B.; Chen, Y. A review of the development of Chinese distant-water squid jigging fisheries. Fish. Res. 2008, 89, 211–221. [Google Scholar] [CrossRef]
- Qian, J.; Li, J.; Zhang, K.; Qiu, Y.; Cai, Y.; Wu, Q.; Tian, H.; Ma, S.; Chen, Z. Spatial–temporal distribution of large-size light falling-net fisheries in the South China Sea. Front. Mar. Sci. 2022, 9, 1075855. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Chen, G.; Zhang, P.; Qiu, Y.; Yao, Z. Hydroacoustic studies on the commercially important squid Sthenoteuthis oualaniensis in the South China Sea. Fish. Res. 2015, 169, 45–51. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Chen, Z.; Dong, J.; Qiu, Y. Hydroacoustic studies on Katsuwonus pelamis and juvenile Thunnus albacares associated with light fish-aggregating devices in the South China Sea. Fish. Res. 2021, 233, 105765. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, Y.; Chen, Z.; Zhang, P.; Zhang, K.; Fan, J.; Chen, G.; Cai, Y.; Sun, M. Advances in pelagic fishery resources survey and assessment in open South China Sea. S. China Fish. Sci. 2018, 14, 118–127. [Google Scholar]
- Yu, J.; Hu, Q.; Tang, D.; Chen, P. Environmental effects on the spatiotemporal variability of purpleback flying squid in Xisha-Zhongsha waters, South China Sea. Mar. Ecol. Prog. Ser. 2019, 623, 25–37. [Google Scholar] [CrossRef]
- Yan, Y.; Feng, B.; Lu, H. Comparative analysis on fishing capability of two light attracting commercial fishing methods around Zhongsha and Xisha Islands sea areas, the South China Sea. S. China Fish. Sci. 2009, 5, 59–64. [Google Scholar]
- Li, J.; Qiu, Y.; Cai, Y.; Zhang, K.; Zhang, P.; Jing, Z.; Wu, Q.; Ma, S.; Liu, H.; Chen, Z. Trend in fishing activity in the open South China Sea estimated from remote sensing of the lights used at night by fishing vessels. ICES J. Mar. Sci. 2022, 79, 230–241. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, P.; Yan, L.; Li, J.; Yang, B.; Tan, Y. Analysis on catch composition and fishing ground by new-built steel light falling-net fishing in the South China Sea. S. China Fish. Sci. 2015, 11, 125–131. [Google Scholar]
- Zhang, P.; Zeng, X.; Yang, L.; Peng, C.; Zhang, X.; Yang, S.; Tan, Y.; Yang, B.; Yan, L. Analyses on fishing ground and catch composition of large-scale light falling-net fisheries in South China Sea. S. China Fish. Sci. 2013, 9, 74–79. [Google Scholar]
- Yan, Y.; Feng, B.; Lu, H.; Lai, J.; Du, S. Fishery biology of purpleback flying squid Sthenoteuthis oualaniensis in northern sea areas around Nansha Islands in summer. Oceanol. Limnol. Sin. 2012, 43, 1177–1186. [Google Scholar]
- Choi, K.; Lee, C.I.; Hwang, K.; Kim, S.W.; Park, J.H.; Gong, Y. Distribution and migration of Japanese common squid, Todarodes pacificus, in the southwestern part of the East (Japan) Sea. Fish. Res. 2008, 91, 281–290. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Cai, Y.; Zhang, K.; Zhang, Q.; Jing, Z.; Wu, Q.; Qiu, Y.; Ma, S.; Chen, Z. Performance of VMS and nightly satellite in monitoring light fishing vessels in the open South China Sea. Fish. Res. 2021, 243, 106100. [Google Scholar] [CrossRef]
- Liu, Y.; Saitoh, S.I.; Hirawake, T.; Igarashi, H.; Ishikawa, Y. Detection of squid and pacific saury fishing vessels around Japan using VIIRS Day/Night Band image. Proc. Asia-Pac. Adv. Netw. 2015, 39, 28–39. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Paulino, C.; Aroni, E.; Xu, H.; Alburqueque, E.; Demarcq, H. Use of nighttime visible images in the study of the spatial and temporal variability of fishing areas of jumbo flying squid (Dosidicus gigas) outside Peruvian EEZ 2004–2015. Fish. Res. 2017, 191, 144–153. [Google Scholar] [CrossRef]
- Waluda, C.M.; Yamashiro, C.; Elvidge, C.D.; Hobson, V.R.; Rodhouse, P.G. Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing. Remote Sens. Environ. 2004, 91, 129–133. [Google Scholar] [CrossRef]
- Waluda, C.M.; Rodhouse, P.G. Dosidicus gigas fishing grounds in the Eastern Pacific as revealed by satellite imagery of the light-fishing fleet. PMBC Res. Bull. 2005, 66, 321–328. [Google Scholar]
- Waluda, C.M.; Griffiths, H.J.; Rodhouse, P.G. Remotely sensed spatial dynamics of the Illex argentinus fishery, Southwest Atlantic. Fish. Res. 2008, 91, 196–202. [Google Scholar] [CrossRef]
- Hsu, F.C.; Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Ghosh, T.; Kroodsma, D.; Susanto, A.; Budy, W.; Riyanto, M.; Nurzeha, R.; et al. Cross-matching VIIRS boat detections with vessel monitoring system tracks in Indonesia. Remote Sens. 2019, 11, 995. [Google Scholar] [CrossRef]
- Sarangi, R.K.; Nagendra Jaiganesh, S.N. VIIRS boat detection (VBD) product-based nighttime fishing vessels observation in the Arabian Sea and Bay of Bengal Sub-regions. Geocarto Int. 2022, 37, 3504–3519. [Google Scholar]
- Seto, K.L.; Miller, N.A.; Kroodsma, D.; Hanich, Q.; Miyahara, M.; Saito, R.; Griffiths, S.; Tickler, D.; Meeuwig, J.; Zeller, D.; et al. Fishing through the cracks: The unregulated nature of global squid fisheries. Sci. Adv. 2023, 9, eadd8125. [Google Scholar] [CrossRef]
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia-Pac. Adv. Netw. 2010, 30, 114. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Alabia, I.D.; Dehara, M.; Saitoh, S.I.; Hirawake, T. Seasonal habitat patterns of Japanese common squid (Todarodes pacificus) inferred from satellite-based species distribution models. Remote Sens. 2016, 8, 921. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Zhang, Z.; Kass, J.M.; Mammola, S.; Koizumi, I.; Li, X.; Tanaka, K.; Ikeda, K.; Suzuki, T.; Yokota, M.; Usio, N. Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Divers. Distrib. 2021, 27, 684–695. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García Marquéz, J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Brun, P.; Thuiller, W.; Chauvier, Y.; Pellissier, L.; Wüest, R.O.; Wang, Z.; Zimmermann, N.E. Model complexity affects species distribution projections under climate change. J. Biogeogr. 2020, 47, 130–142. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa, and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Engler, R.; Randin, C.F.; Thuiller, W.; Dullinger, S.; Zimmermann, N.E.; Araujo, M.B.; Pearman, P.B.; Albert, C.H.; Choler, P.; Coldea, G.; et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 2011, 17, 2330–2341. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Ruiz, J.; Caballero, I.; Navarro, G. Sensing the same fishing fleet with AIS and VIIRS: A seven-year assessment of squid jiggers in FAO major fishing area 41. Remote Sens. 2019, 12, 32. [Google Scholar] [CrossRef]
- Kiyofuji, H.; Saitoh, S.I. Use of nighttime visible images to detect Japanese common squid Todarodes pacificus fishing areas and potential migration routes in the Sea of Japan. Mar. Ecol. Prog. Ser. 2004, 276, 173–186. [Google Scholar] [CrossRef]
- Nguyen, K.Q.; Winger, P.D. Artificial light in commercial industrialized fishing applications: A review. Rev. Fish. Sci. Aquac. 2019, 27, 106–126. [Google Scholar] [CrossRef]
- Alabia, I.D.; Saitoh, S.I.; Mugo, R.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T.; Seito, M. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fish. Oceanogr. 2015, 24, 190–203. [Google Scholar] [CrossRef]
- Alabia, I.D.; Saitoh, S.I.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T.; Seito, M. Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific. ICES J. Mar. Sci. 2016, 73, 1343–1356. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, Y.; Chen, X.; Yi, Q.; Qian, W. Response of winter cohort abundance of Japanese common squid Todarodes pacificus to the ENSO events. Acta Oceanol. Sin. 2018, 37, 61–71. [Google Scholar] [CrossRef]
- Geronimo, R.C.; Franklin, E.C.; Brainard, R.E.; Elvidge, C.D.; Santos, M.D.; Venegas, R.; Mora, C. Mapping fishing activities and suitable fishing grounds using nighttime satellite images and maximum entropy modelling. Remote Sens. 2018, 10, 1604. [Google Scholar] [CrossRef]
- Hua, C.; Li, F.; Zhu, Q.; Zhu, G.; Meng, L. Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density model and weighted analysis. Fish. Res. 2020, 221, 105408. [Google Scholar] [CrossRef]
- Xing, Q.; Yu, H.; Liu, Y.; Li, J.; Tian, Y.; Bakun, A.; Cao, C.; Tian, H.; Li, W. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury (Cololabis saira). Prog. Oceanogr. 2022, 201, 102743. [Google Scholar] [CrossRef]
- Tian, S.; Chen, X.; Chen, Y.; Xu, L.; Dai, X. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommastrephes bartramii in the northwestern Pacific Ocean. Fish. Res. 2009, 95, 181–188. [Google Scholar] [CrossRef]
- Li, J.; Cai, Y.; Zhang, P.; Zhang, Q.; Jing, Z.; Wu, Q.; Qiu, Y.; Ma, S.; Chen, Z. Satellite observation of a newly developed light-fishing “hotspot” in the open South China Sea. Remote Sens. Environ. 2021, 256, 112312. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, P.; Yang, B.; Chen, S.; Li, Y.; Li, Y.; Song, P.; Lin, L. Relationship between the catch of Symplectoteuthis oualaniensis and surface temperature, as well as the vertical temperature structure in the South China Sea. J. Fish. Sci. China 2016, 23, 469–477. [Google Scholar]
Year | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|
No. of raw images | 49 | 47 | 52 | 48 | 46 | 50 | 48 | 50 |
Average overpass time | 20:36 | 20:03 | 19:46 | 19:29 | 19:02 | 19:29 | 19:46 | 19:50 |
No. of filtered images | 24 | 19 | 15 | 15 | 9 | 14 | 18 | 25 |
Average overpass time | 20:42 | 20:03 | 19:56 | 19:36 | 19:43 | 19:47 | 19:57 | 20:07 |
Satellite data source | F15 | F15 | F16 | F16 | F16 | F18 | F18 | F18 |
Year | No. before Filtration | No. after Filtration |
---|---|---|
2005 | 412 | 62 |
2006 | 399 | 91 |
2007 | 406 | 114 |
2008 | 485 | 130 |
2010 | 1267 | 186 |
2011 | 1512 | 257 |
Year | AUC | TSS | Boyce Index |
---|---|---|---|
2005 | 0.905 ± 0.055 | 0.777 ± 0.106 | 0.729 ± 0.130 |
2006 | 0.909 ± 0.015 | 0.733 ± 0.053 | 0.812 ± 0.061 |
2007 | 0.926 ± 0.016 | 0.767 ± 0.054 | 0.848 ± 0.080 |
2008 | 0.912 ± 0.011 | 0.750 ± 0.040 | 0.797 ± 0.088 |
2010 | 0.892 ± 0.022 | 0.706 ± 0.051 | 0.884 ± 0.100 |
2011 | 0.872 ± 0.006 | 0.643 ± 0.024 | 0.910 ± 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Z.; Zhang, K.; Fan, J.; Liu, H.; Qiu, Y.; Li, X.; Chen, Z. Tracking the Development of Lit Fisheries by Using DMSP/OLS Data in the Open South China Sea. Remote Sens. 2024, 16, 3678. https://doi.org/10.3390/rs16193678
Li J, Zhang Z, Zhang K, Fan J, Liu H, Qiu Y, Li X, Chen Z. Tracking the Development of Lit Fisheries by Using DMSP/OLS Data in the Open South China Sea. Remote Sensing. 2024; 16(19):3678. https://doi.org/10.3390/rs16193678
Chicago/Turabian StyleLi, Jiajun, Zhixin Zhang, Kui Zhang, Jiangtao Fan, Huaxue Liu, Yongsong Qiu, Xi Li, and Zuozhi Chen. 2024. "Tracking the Development of Lit Fisheries by Using DMSP/OLS Data in the Open South China Sea" Remote Sensing 16, no. 19: 3678. https://doi.org/10.3390/rs16193678
APA StyleLi, J., Zhang, Z., Zhang, K., Fan, J., Liu, H., Qiu, Y., Li, X., & Chen, Z. (2024). Tracking the Development of Lit Fisheries by Using DMSP/OLS Data in the Open South China Sea. Remote Sensing, 16(19), 3678. https://doi.org/10.3390/rs16193678