A Fast and Robust Range Alignment Method for ISAR Imaging Based on a Deep Learning Network and Regional Multi-Scale Minimum Entropy Method
Abstract
:1. Introduction
2. Principle of ISAR Range Alignment
3. The Proposed Method
3.1. CRAN Architecture
3.2. Regional Multi-Scale Minimum Entropy Method
4. Experimental Section
4.1. Dataset and Experimental Setup
4.1.1. Dataset
4.1.2. Experimental Setup
4.2. Experimental Results and Analysis
4.2.1. Performance of Deep Learning Models
4.2.2. Comparative Experiment and Analysis of Different RA Methods
4.3. Verification of Measured Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ozdemir, C. Inverse Synthetic Aperture Radar Imaging with Matlab Algorithms; Wiley: Hoboken, NJ, USA, 2012; pp. 300–316. [Google Scholar]
- Chen, V.C. Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications; Institution of Engineering and Technology: Stevenage, UK, 2014; Volume 55, p. 56. [Google Scholar]
- Zhu, D.; Wang, L.; Yu, Y.; Tao, Q.; Zhu, Z. Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geosci. Remote Sens. Lett. 2009, 6, 204–208. [Google Scholar]
- Zhang, L.; Sheng, J.l.; Duan, J.; Xing, M.D.; Qiao, Z.J.; Bao, Z. Translational motion compensation for ISAR imaging under low SNR by minimum entropy. EURASIP J. Adv. Signal Process. 2013, 2013, 33. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X. Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans. Signal Process. 2015, 63, 3425–3434. [Google Scholar] [CrossRef]
- Wang, R.; Zeng, T.; Hu, C.; Yang, J. Accurate range profile alignment method based on minimum entropy for inverse synthetic aperture radar image formation. Iet Radar Sonar Navig. 2016, 10, 663–671. [Google Scholar] [CrossRef]
- Ligori, D.; Wagner, S.; Fabbrini, L.; Greco, M.; Bieker, T.; Pinelli, G.; Brüggenwirth, S. Nonparametric ISAR autofocusing via entropy-based Doppler centroid search. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1725–1729. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Du, L.; Yang, D.; Chen, B. Noise-Robust Motion Compensation for Aerial Maneuvering Target ISAR Imaging by Parametric Minimum Entropy Optimization. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4202–4217. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, Y. Parametric translational motion compensation of spaceborne ISAR imagery for earth-orbit targets based on parabola detection and entropy minimization. Remote Sens. Lett. 2021, 12, 160–168. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Song, M.; Huang, P.; Xing, M. Noise Robust High-Speed Motion Compensation for ISAR Imaging Based on Parametric Minimum Entropy Optimization. Remote Sens. 2022, 14, 2178. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, G.; Zhang, T.; Gao, Y.; Zhu, K.; Li, L.; Wei, Y. An improved parametric translational motion compensation algorithm for targets with complex motion under low signal-to-noise ratios. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5237514. [Google Scholar] [CrossRef]
- Liu, F.; Huang, D.; Guo, X.; Feng, C. Noise-Robust ISAR Translational Motion Compensation via HLPT-GSCFT. Remote Sens. 2022, 14, 6201. [Google Scholar] [CrossRef]
- Hu, C.Y.; Wang, L.; Li, Z.; Zhu, D.Y. Inverse Synthetic Aperture Radar Imaging Using a Fully Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1203–1207. [Google Scholar] [CrossRef]
- Wei, S.; Liang, J.; Wang, M.; Zeng, X.; Shi, J.; Zhang, X. CIST: An Improved ISAR Imaging Method Using Convolution Neural Network. Remote Sens. 2020, 12, 2641. [Google Scholar] [CrossRef]
- Shi, H.; Liu, Y.; Guo, J.; Liu, M. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform. J. Syst. Eng. Electron. 2020, 31, 1178–1185. [Google Scholar]
- Wang, L.; Wang, L.; Zhu, D. An ISAR Autofocus Imaging Algorithm Based on FCN and Transfer Learning. In Proceedings of the 2023 24th International Radar Symposium (IRS), Berlin, Germany, 24–26 May 2023. [Google Scholar]
- Wang, Y.; Feng, C.; Zhang, Y.; He, S. Translational motion compensation of space micromotion targets using regression network. IEEE Access 2019, 7, 155038–155047. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Gao, Q.; Feng, Z.; Wang, M.; Jiao, L. AFnet and PAFnet: Fast and Accurate SAR Autofocus Based on Deep Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5238113. [Google Scholar] [CrossRef]
- Li, X.; Bai, X.; Zhou, F. High-Resolution ISAR Imaging and Autofocusing via 2D-ADMM-Net. Remote Sens. 2021, 13, 2326. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Huo, W.; Li, Z.; Yang, J.; Li, H. STLS-LADMM-Net: A deep network for SAR autofocus imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5226914. [Google Scholar] [CrossRef]
- Li, R.Z.; Zhang, S.H.; Zhang, C.; Liu, Y.X.; Li, X. Deep Learning Approach for Sparse Aperture ISAR Imaging and Autofocusing Based on Complex-Valued ADMM-Net. IEEE Sens. J. 2021, 21, 3437–3451. [Google Scholar] [CrossRef]
- Pu, W. SAE-Net: A Deep Neural Network for SAR Autofocus. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5220714. [Google Scholar] [CrossRef]
- Wei, S.J.; Liang, J.D.; Wang, M.; Shi, J.; Zhang, X.L.; Ran, J.H. AF-AMPNet: A Deep Learning Approach for Sparse Aperture ISAR Imaging and Autofocusing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5206514. [Google Scholar] [CrossRef]
- Yuan, Y.; Luo, Y.; Kang, L.; Ni, J.; Zhang, Q. Range alignment in ISAR imaging based on deep recurrent neural network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4022405. [Google Scholar] [CrossRef]
- Li, W.; He, Q.; Li, K.; Yuan, Y.; Luo, Y. ISAR range alignment under sparse aperture condition based on CRAN. In Proceedings of the 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), Hefei, China, 21–23 August 2022. [Google Scholar]
Name | Start (Range Cells) | Step (Range Cells) | Stop (Range Cells) |
---|---|---|---|
Scale 0 | −15 | 1 | 15 |
Scale 1 | −1 | 0.1 | 1 |
Method | MSE | MaxE |
---|---|---|
CNN | 1.129 | 28.74 |
RNN | 1.082 | 22.21 |
CRAN without Concatenation | 0.993 | 15.88 |
CRAN | 0.778 | 13.24 |
SNR (dB) | Method | RE | RC | IE | IC |
---|---|---|---|---|---|
RNN | 9.3099 | 1.3253 | 8.1834 | 1.6854 | |
10 | CRAN | 9.3109 | 1.3250 | 8.8143 | 1.4544 |
ME | 9.3108 | 1.3249 | 7.8717 | 1.7218 | |
CRAN+RMSME | 9.3018 | 1.3291 | 6.9136 | 2.1157 | |
RNN | 9.7090 | 1.0177 | 9.0284 | 1.1758 | |
5 | CRAN | 9.7091 | 1.0176 | 9.6500 | 1.0163 |
ME | 9.7088 | 1.0178 | 8.6225 | 1.2565 | |
CRAN+RMSME | 9.7017 | 1.0204 | 7.8812 | 1.4440 | |
RNN | 10.2130 | 0.7447 | 10.1034 | 0.7643 | |
0 | CRAN | 10.2129 | 0.7448 | 10.3277 | 0.6976 |
ME | 10.2132 | 0.7447 | 9.7868 | 0.8378 | |
CRAN+RMSME | 10.2103 | 0.7458 | 9.5880 | 0.8784 |
SR (%) | Method | RE | RC |
---|---|---|---|
RNN | 9.8608 | 0.7447 | |
30 | CRAN | 9.8610 | 0.7447 |
ME | 9.8606 | 0.7448 | |
CRAN+RMSME | 9.8394 | 0.7597 | |
RNN | 9.5198 | 0.7447 | |
50 | CRAN | 9.5197 | 0.7448 |
ME | 9.5195 | 0.7449 | |
CRAN+RMSME | 9.4975 | 0.7597 | |
RNN | 9.0111 | 0.7449 | |
70 | CRAN | 9.0110 | 0.7450 |
ME | 9.0108 | 0.7451 | |
CRAN+RMSME | 8.9894 | 0.7596 |
Method | Average Time per Frame (s) |
---|---|
ME | 11.928 |
GME | 0.152 |
RNN | 0.0105 |
CRAN | 0.0106 |
CRAN+RMSME | 0.0390 |
Method | RE | RC | IE | IC |
---|---|---|---|---|
RNN | 8.9351 | 1.7093 | 8.4875 | 1.8812 |
CRAN | 8.9382 | 1.7067 | 8.6367 | 1.8064 |
ME | 8.9324 | 1.7094 | 8.5040 | 1.8461 |
CRAN+RMSME | 8.9316 | 1.7081 | 7.4192 | 2.4769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Q.; Wang, H.; Yan, Z.; Wang, Z.; Lu, Y. A Fast and Robust Range Alignment Method for ISAR Imaging Based on a Deep Learning Network and Regional Multi-Scale Minimum Entropy Method. Remote Sens. 2024, 16, 3677. https://doi.org/10.3390/rs16193677
Ning Q, Wang H, Yan Z, Wang Z, Lu Y. A Fast and Robust Range Alignment Method for ISAR Imaging Based on a Deep Learning Network and Regional Multi-Scale Minimum Entropy Method. Remote Sensing. 2024; 16(19):3677. https://doi.org/10.3390/rs16193677
Chicago/Turabian StyleNing, Qianhao, Hongyuan Wang, Zhiqiang Yan, Zijian Wang, and Yinxi Lu. 2024. "A Fast and Robust Range Alignment Method for ISAR Imaging Based on a Deep Learning Network and Regional Multi-Scale Minimum Entropy Method" Remote Sensing 16, no. 19: 3677. https://doi.org/10.3390/rs16193677
APA StyleNing, Q., Wang, H., Yan, Z., Wang, Z., & Lu, Y. (2024). A Fast and Robust Range Alignment Method for ISAR Imaging Based on a Deep Learning Network and Regional Multi-Scale Minimum Entropy Method. Remote Sensing, 16(19), 3677. https://doi.org/10.3390/rs16193677