Remotely Sensed Comparative Spatiotemporal Analysis of Drought and Wet Periods in Distinct Mediterranean Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
- The study domains should belong to the Mediterranean basin.
- There must be high probability of distinct drought/wetness differences based on the geographical background. That is why a European, an African and Middle Eastern country has been selected.
- A certain geographical distance between them should be guaranteed to capture local meteorological and environmental variability.
2.2. Materials
2.3. Methodology
The Use of SPI for a Comparative Spatiotemporal Analysis of Wet/Dry Conditions
3. Results
3.1. Spatiotemporal Analysis of Annual and Intra-Annual Drought/Wetness Severity in Eastern Mancha (Spain)
3.2. Spatiotemporal Analysis of Annual and Intra-Annual Drought/Wetness Severity in Sidi Bouzid (Tunisia)
3.3. Spatiotemporal Analysis of Annual and Intra-Annual Drought/Wetness Severity in Beqaa Valley (Lebanon)
3.4. Comparative Analysis among the Three Study Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalezios, N.R.; Dunkel, Z.; Eslamian, S. Meteorological Drought Indices: Definitions. In Handbook of Drought and Water Scarcity; CRC Press: Boca Raton, FL, USA, 2017; pp. 27–44. [Google Scholar] [CrossRef]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global Changes in Drought Conditions Under Different Levels of Warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 171. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Sivakumar, M.V.K.; Pulwarty, R. Managing Drought Risk in a Changing Climate: The Role of National Drought Policy. Weather Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A New Global Database of Meteorological Drought Events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- Trnka, M.; Hlavinka, P.; Možný, M.; Semerádová, D.; Štěpánek, P.; Balek, J.; Bartošová, L.; Zahradníček, P.; Bláhová, M.; Skalák, P.; et al. Czech Drought Monitor System for Monitoring and Forecasting Agricultural Drought and Drought Impacts. Int. J. Climatol. 2020, 40, 5941–5958. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Wang, K.; Niu, J. A New Method and a New Index for Identifying Socioeconomic Drought Events under Climate Change: A Case Study of the East River Basin in China. Sci. Total Environ. 2018, 616–617, 363–375. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Elmore, R.W.; Guzman, J.G.; Hanna, H.M.; Hart, C.E.; Helmers, M.J.; Hodgson, E.W.; Lenssen, A.W.; Mallarino, A.P.; Robertson, A.E.; et al. Drought Impact on Crop Production and the Soil Environment: 2012 Experiences from Iowa. J. Soil. Water Conserv. 2013, 68, 19A–24A. [Google Scholar] [CrossRef]
- Parente, J.; Amraoui, M.; Menezes, I.; Pereira, M.G. Drought in Portugal: Current Regime, Comparison of Indices and Impacts on Extreme Wildfires. Sci. Total Environ. 2019, 685, 150–173. [Google Scholar] [CrossRef]
- Sakellariou, S.; Sfougaris, A.; Christopoulou, O.; Tampekis, S. Integrated Wildfire Risk Assessment of Natural and Anthropogenic Ecosystems Based on Simulation Modeling and Remotely Sensed Data Fusion. Int. J. Disaster Risk Reduct. 2022, 78, 103129. [Google Scholar] [CrossRef]
- Sakellariou, S.; Samara, F.; Tampekis, S.; Christopoulou, O.; Sfougaris, A. Optimal Number and Location of Watchtowers for Immediate Detection of Forest Fires in a Small Island. Int. J. Agric. Environ. Inf. Syst. 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Tampekis, S.; Sakellariou, S.; Palaiologou, P.; Arabatzis, G.; Kantartzis, A.; Malesios, C.; Stergiadou, A.; Fafalis, D.; Tsiaras, E. Building Wildland–Urban Interface Zone Resilience through Performance-Based Wildfire Engineering. A Holistic Theoretical Framework. Euro-Mediterr. J. Environ. Integr. 2023, 8, 675–689. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Alpanakis, N.; Sakellariou, S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology 2021, 8, 47. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Gamage, M.S.D.N.; Smakhtin, V.U. The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia; IWMI: Anand, India, 2004. [Google Scholar]
- Reading the Sendai Framework for Disaster Risk Reduction 2015–2030|UNDRR. Available online: https://www.undrr.org/publication/reading-sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 25 April 2024).
- Dalezios, N.R. Drought and Remote Sensing: An Overview. In Remote Sensing of Hydrometeorological Hazards; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–31. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Dercas, N.; Eslamian, S. Water Scarcity Management: Part 2: Satellite-Based Composite Drought Analysis. Int. J. Glob. Environ. Issues 2018, 17, 262–295. [Google Scholar] [CrossRef]
- Nastos, P.T.; Dalezios, N.R.; Faraslis, I.N.; Mitrakopoulos, K.; Blanta, A.; Spiliotopoulos, M.; Sakellariou, S.; Sidiropoulos, P.; Tarquis, A.M. Risk Management Framework of Environmental Hazards and Extremes in Mediterranean Ecosystems. Nat. Hazards Earth Syst. Sci. 2021, 21, 1935–1954. [Google Scholar] [CrossRef]
- Barthelemy, S.; Bonan, B.; Calvet, J.C.; Grandjean, G.; Moncoulon, D.; Kapsambelis, D.; Bernardie, S. A New Approach for Drought Index Adjustment to Clay-Shrinkage-Induced Subsidence over France: Advantages of the Interactive Leaf Area Index. Nat. Hazards Earth Syst. Sci. 2024, 24, 999–1016. [Google Scholar] [CrossRef]
- Li, P.; Jia, L.; Lu, J.; Jiang, M.; Zheng, C. A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring. Remote Sens. 2024, 16, 780. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Chen, Y.; Duan, W.; Wang, J.; Wang, X. Characteristics of Dry and Wet Changes and Future Trends in the Tarim River Basin Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 880. [Google Scholar] [CrossRef]
- Pei, W.; Hao, L.; Fu, Q.; Ren, Y.; Li, T. The Standardized Precipitation Evapotranspiration Index Based on Cumulative Effect Attenuation. J. Hydrol. 2024, 635, 131148. [Google Scholar] [CrossRef]
- Shayeghi, A.; Ziveh, A.R.; Bakhtar, A.; Teymoori, J.; Hanel, M.; Vargas Godoy, M.R.; Markonis, Y.; AghaKouchak, A. Assessing Drought Impacts on Groundwater and Agriculture in Iran Using High-Resolution Precipitation and Evapotranspiration Products. J. Hydrol. 2024, 631, 130828. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, E.; Yin, J.; Jia, L.; Zhang, P.; Sun, J. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. [Google Scholar] [CrossRef]
- Greve, P.; Roderick, M.L.; Ukkola, A.M.; Wada, Y. The Aridity Index under Global Warming. Environ. Res. Lett. 2019, 14, 124006. [Google Scholar] [CrossRef]
- Du, J.; Fang, J.; Xu, W.; Shi, P. Analysis of Dry/Wet Conditions Using the Standardized Precipitation Index and Its Potential Usefulness for Drought/Flood Monitoring in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 377–387. [Google Scholar] [CrossRef]
- Sakellariou, S.; Spiliotopoulos, M.; Alpanakis, N.; Faraslis, I.; Sidiropoulos, P.; Tziatzios, G.A.; Karoutsos, G.; Dalezios, N.R.; Dercas, N. Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems. Sustainability 2024, 16, 1240. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhang, Y.; Zhan, C.; Qiao, Y. Comprehensive Assessment of Drought Risk in the Arid Region of Northwest China Based on the Global Palmer Drought Severity Index Gridded Data. Sci. Total Environ. 2018, 627, 951–962. [Google Scholar] [CrossRef]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The Effect of PET Method on Reconnaissance Drought Index (RDI) Calculation. J. Arid. Environ. 2013, 88, 130–140. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Shalamzari, M.J.; Arshad, A.; Liu, S.; Liu, T.; Tao, H. Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water 2022, 14, 861. [Google Scholar] [CrossRef]
- Khanmohammadi, N.; Rezaie, H.; Behmanesh, J. Investigation of Drought Trend on the Basis of the Best Obtained Drought Index. Water Resour. Manag. 2022, 36, 1355–1375. [Google Scholar] [CrossRef]
- Razmi, R.; Sotoudeh, F.; Ghane, M.; Ostad-Ali-Askari, K. Temporal–Spatial Analysis of Drought and Wet Periods: Case Study of a Wet Region in Northwestern Iran (East Azerbaijan, West Azerbaijan, Ardebil and Zanjan Provinces). Appl. Water Sci. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Tefera, A.S.; Ayoade, J.O.; Bello, N.J. Comparative Analyses of SPI and SPEI as Drought Assessment Tools in Tigray Region, Northern Ethiopia. SN Appl. Sci. 2019, 1, 1265. [Google Scholar] [CrossRef]
- Makuya, V.; Tesfuhuney, W.; Moeletsi, M.E.; Bello, Z. Assessing the Impact of Agricultural Drought on Yield over Maize Growing Areas, Free State Province, South Africa, Using the SPI and SPEI. Sustainability 2024, 16, 4703. [Google Scholar] [CrossRef]
- Reyniers, N.; Osborn, T.J.; Addor, N.; Darch, G. Projected Changes in Droughts and Extreme Droughts in Great Britain Strongly Influenced by the Choice of Drought Index. Hydrol. Earth Syst. Sci. 2023, 27, 1151–1171. [Google Scholar] [CrossRef]
- Gebremichael, H.B.; Raba, G.A.; Beketie, K.T.; Feyisa, G.L. Temporal and Spatial Characteristics of Drought, Future Changes and Possible Drivers over Upper Awash Basin, Ethiopia, Using SPI and SPEI. Environ. Dev. Sustain. 2024, 26, 947–985. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Lei, H.; Xu, K.; Xu, X. Comparative Analysis of Drought Based on Precipitation and Soil Moisture Indices in Haihe Basin of North China during the Period of 1960–2010. J. Hydrol. 2015, 526, 55–67. [Google Scholar] [CrossRef]
- Ámbito e Integración—Junta Central Regantes Mancha Oriental. Available online: https://www.jcrmo.org/entidad/ambito-e-integracion/ (accessed on 10 June 2024).
- Agricultural Water Management in Castilla-La Mancha (Spain). Available online: https://www.researchgate.net/publication/285525110_Agricultural_water_management_in_Castilla-La_Mancha_Spain (accessed on 10 June 2024).
- Sidi Bouzid Governorate—Wikipedia. Available online: https://en.wikipedia.org/wiki/Sidi_Bouzid_Governorate (accessed on 25 April 2024).
- Sidi Bouzid Climate, Weather by Month, Average Temperature (Tunisia)—Weather Spark. Available online: https://weatherspark.com/y/61917/Average-Weather-in-Sidi-Bouzid-Tunisia-Year-Round (accessed on 25 April 2024).
- Mahfouz, P.; Mitri, G.; Jazi, M.; Karam, F. Investigating the Temporal Variability of the Standardized Precipitation Index in Lebanon. Climate 2016, 4, 27. [Google Scholar] [CrossRef]
- Kobrossi, J.; Karam, F.; Mitri, G. Rain Pattern Analysis Using the Standardized Precipitation Index for Long-Term Drought Characterization in Lebanon. Arab. J. Geosci. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations|Climate Hazards Center—UC Santa Barbara. Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 25 April 2024).
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of Eight High Spatial Resolution Gridded Precipitation Products in Adige Basin (Italy) at Multiple Temporal and Spatial Scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17 January 1993; pp. 179–184. [Google Scholar]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Proc. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Piri, J.; Abdolahipour, M.; Keshtegar, B. Advanced Machine Learning Model for Prediction of Drought Indices Using Hybrid SVR-RSM. Water Resour. Manag. 2023, 37, 683–712. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Carbone, G.J.; Lu, J.; Brunetti, M. Estimating Uncertainty Associated with the Standardized Precipitation Index. Int. J. Climatol. 2018, 38, E607–E616. [Google Scholar] [CrossRef]
- Uml, M.J.; Kim, Y.; Park, D.; Kim, J. Effects of Different Reference Periods on Drought Index (SPEI) Estimations from 1901 to 2014. Hydrol. Earth Syst. Sci. 2017, 21, 4989–5007. [Google Scholar] [CrossRef]
- WMO. Standardized Precipitation Index User Guide. 2012. Available online: https://www.droughtmanagement.info/literature/WMO_standardized_precipitation_index_user_guide_en_2012.pdf (accessed on 10 January 2024).
- Habibi, B.; Meddi, M.; Torfs, P.J.J.F.; Remaoun, M.; Van Lanen, H.A.J. Characterisation and Prediction of Meteorological Drought Using Stochastic Models in the Semi-Arid Chéliff–Zahrez Basin (Algeria). J. Hydrol. Reg. Stud. 2018, 16, 15–31. [Google Scholar] [CrossRef]
- Jiménez-Donaire, M.d.P.; Tarquis, A.; Giráldez, J.V. Evaluation of a Combined Drought Indicator and Its Predictive Potential for Agricultural Droughts in Southern Spain. Nat. Hazards Earth Syst. Sci. Discuss. 2019, 20, 21–33. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm1. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- EDO. European Drought Observatory. 2024. Available online: https://drought.emergency.copernicus.eu/data/factsheets/factsheet_spi.pdf (accessed on 15 January 2024).
- Ayub, M.; Ashraf, M.Y.; Kausar, A.; Saleem, S.; Anwar, S.; Altay, V.; Ozturk, M. Growth and Physio-Biochemical Responses of Maize (Zea Mays L.) to Drought and Heat Stresses. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2021, 155, 535–542. [Google Scholar] [CrossRef]
- Aurenhammer, F.; Klein, R.; Lee, D.T. Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Co., Inc.: Hackensack, NJ, USA, 2013; pp. 1–337. [Google Scholar] [CrossRef]
- Pandey, V.; Srivastava, P.K.; Singh, S.K.; Petropoulos, G.P.; Mall, R.K. Drought Identification and Trend Analysis Using Long-Term Chirps Satellite Precipitation Product in Bundelkhand, India. Sustainability 2021, 13, 1042. [Google Scholar] [CrossRef]
- Awchi, T.A.; Kalyana, M.M. Meteorological Drought Analysis in Northern Iraq Using SPI and GIS. Sustain. Water Resour. Manag. 2017, 3, 451–463. [Google Scholar] [CrossRef]
- Dikici, M. Drought Analysis with Different Indices for the Asi Basin (Turkey). Sci. Rep. 2020, 10, 20739. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Almazroui, M.; Salam, M.A.; Mondol, M.A.H.; Rahman, M.M.; Deb, L.; Kundu, P.K.; Zaman, M.A.U.; Islam, A.R.M.T. Spatiotemporal Drought Analysis in Bangladesh Using the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Sci. Rep. 2022, 12, 20694. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal Drought Analysis by the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Won, J.; Kim, S. Future Drought Analysis Using SPI and EDDI to Consider Climate Change in South Korea. Water Sci. Technol. Water Supply 2020, 20, 3266–3280. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Karim, F.; Karim, F.; Frihida, A. Monitoring System Using Web of Things in Precision Agriculture. Procedia Comput. Sci. 2017, 110, 402–409. [Google Scholar] [CrossRef]
SPI Values | Classification | Probability (%) |
---|---|---|
<−2 | Extremely dry | 2.3 |
From −1.5 to −1.99 | Very dry | 4.4 |
From −1 to −1.49 | Moderately dry | 9.2 |
From −0.99 to 0.99 | Normal precipitation | 68.2 |
From 1 to 1.49 | Moderately wet | 9.2 |
From 1.5 to 1.99 | Very wet | 4.4 |
>2 | Extremely wet | 2.3 |
Extremely Dry Years | SPI | Extremely Wet Years | SPI | |
---|---|---|---|---|
Eastern Mancha (Spain) | 1994–1995 | −1.84 | 1989–1990 | 1.99 |
2015–2016 | −1.18 | 2010–2011 | 1.07 | |
Sidi Bouzid (Tunisia) | 1994–1995 | −1.05 | 1990–1991 | 1.55 |
2000–2001 | −1.08 | 1995–1996 | 1.79 | |
Beqaa Valley (Lebanon) | 1989–1990 | −1.39 | 2002–2003 | 1.58 |
2007–2008 | −1.28 | 2018–2019 | 2.28 |
Frequency of Drought Episodes | Frequency of Wetness Episodes | |
---|---|---|
Eastern Mancha (Spain) | ~every 20 years | ~every 20 years |
1994; 2015 | 1989; 2010 | |
Sidi Bouzid (Tunisia) | No periodicity | No periodicity |
2000; 2001 | 1990; 1995 | |
Beqaa Valley (Lebanon) | ~every 10 years | No periodicity |
1989; 1998; 2007; 2016 | 2002; 2012; 2018 |
Areal Extent of Extreme Drought | Areal Extent of Extreme Wetness | |
---|---|---|
Eastern Mancha (Spain) | 1994–1995: Moderately dry: 19%, Severely dry: 42%, Extremely dry: 36% | 1989–1990: Moderately wet: 16%, Very wet: 23%, Extremely wet: 50% |
2015–2016: Moderately dry: 43%, Severely dry: 26%, Extremely dry: 2% | 2010–2011: Moderately wet: 27%, Very wet: 18%, Extremely wet: 3% | |
Sidi Bouzid (Tunisia) | 1994–1995: Moderately dry: 25%, Severely dry: 27%, Extremely dry: 7% | 1990–1991: Moderately wet: 15%, Very wet: 13%, Extremely wet: 36% |
2000–2001: Moderately dry: 47%, Severely dry: 10%, Extremely dry: 0% | 1995–1996: Moderately wet: 12%, Very wet: 18%, Extremely wet: 53% | |
Beqaa valley (Lebanon) | 1989–1990: Moderately dry: 50%, Severely dry: 29%, Extremely dry: 8% | 2002–2003: Moderately wet: 2%, Very wet: 21%, Extremely wet: 45% |
2007–2008: Moderately dry: 13%, Severely dry: 45%, Extremely dry: 5% | 2018–2019: Moderately wet: 11%, Very wet: 15%, Extremely wet: 68% |
Extremely Dry Years | Months | Extremely Wet Years | Months | |
---|---|---|---|---|
Eastern Mancha (Spain) | 1994–1995 | 12 | 1989–1990 | 11 |
2015–2016 | 9 | 2010–2011 | 4 | |
Sidi Bouzid (Tunisia) | 1994–1995 | 8 | 1990–1991 | 7 |
2000–2001 | 8 | 1995–1996 | 10 | |
Beqaa valley (Lebanon) | 1989–1990 | 12 | 2002–2003 | 8 |
2007–2208 | 7 | 2018–2019 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakellariou, S.; Dalezios, N.R.; Spiliotopoulos, M.; Alpanakis, N.; Faraslis, I.; Tziatzios, G.A.; Sidiropoulos, P.; Dercas, N.; Domínguez, A.; López, H.M.; et al. Remotely Sensed Comparative Spatiotemporal Analysis of Drought and Wet Periods in Distinct Mediterranean Agroecosystems. Remote Sens. 2024, 16, 3652. https://doi.org/10.3390/rs16193652
Sakellariou S, Dalezios NR, Spiliotopoulos M, Alpanakis N, Faraslis I, Tziatzios GA, Sidiropoulos P, Dercas N, Domínguez A, López HM, et al. Remotely Sensed Comparative Spatiotemporal Analysis of Drought and Wet Periods in Distinct Mediterranean Agroecosystems. Remote Sensing. 2024; 16(19):3652. https://doi.org/10.3390/rs16193652
Chicago/Turabian StyleSakellariou, Stavros, Nicolas R. Dalezios, Marios Spiliotopoulos, Nikolaos Alpanakis, Ioannis Faraslis, Georgios A. Tziatzios, Pantelis Sidiropoulos, Nicholas Dercas, Alfonso Domínguez, Higinio Martínez López, and et al. 2024. "Remotely Sensed Comparative Spatiotemporal Analysis of Drought and Wet Periods in Distinct Mediterranean Agroecosystems" Remote Sensing 16, no. 19: 3652. https://doi.org/10.3390/rs16193652
APA StyleSakellariou, S., Dalezios, N. R., Spiliotopoulos, M., Alpanakis, N., Faraslis, I., Tziatzios, G. A., Sidiropoulos, P., Dercas, N., Domínguez, A., López, H. M., Montoya, F., López-Urrea, R., Karam, F., Amami, H., & Nsiri, R. (2024). Remotely Sensed Comparative Spatiotemporal Analysis of Drought and Wet Periods in Distinct Mediterranean Agroecosystems. Remote Sensing, 16(19), 3652. https://doi.org/10.3390/rs16193652