Autonomous Single-Image Dehazing: Enhancing Local Texture with Haze Density-Aware Image Blending
Abstract
:1. Introduction
- If is haze-free, to ensure that no dehazing is applied.
- If is mildly or moderately hazy, to apply dehazing proportionally to the haziness degree.
- If is densely hazy, to perform full-scale dehazing.
2. Literature Review
2.1. Engineered Methods
2.2. Deep-Learning Methods
3. Proposed Algorithm
- Unsharp masking, which enhances edge details obscured by haze.
- Haziness degree evaluator, which computes the haze density map and the average haze density .
- Image blending, where the input image is combined with the dehazed result based on local haze conditions.
3.1. Unsharp Masking
3.2. Adaptive Dehazing
3.2.1. Haziness Degree Evaluator
3.2.2. Self-Calibration Weight
- If , the input image is classified as haze-free, and , indicating that no dehazing is required.
- If , the input image is classified as mildly or moderately hazy. Given that the average haze density varies exponentially, we set to ensure that also varies exponentially between zero and unity, signifying an exponentially increasing dehazing power.
- If , the input image is classified as densely hazy, and haze removal should be maximized. Consequently, is empirically configured to vary linearly from unity to an upper bound .
3.3. Image Blending
- Haze-free patches are preserved in the blending result ().
- Mildly or moderately hazy patches are fused with their corresponding dehazed versions according to the blending weight .
- Densely hazy patches are fully dehazed (), meaning that only the dehazed information appears in the blending result.
3.4. Adaptive Tone Remapping
4. Experimental Results
4.1. Qualitative Evaluation
4.2. Quantitative Evaluation
4.3. Execution Time Evaluation
4.4. Remote Sensing Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Zhu, Y.; Tian, Z.; Zhang, F.; Yao, M. Occlusion and multi-scale pedestrian detection: A review. Array 2023, 19, 100318. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Ro, Y.M. Robust pedestrian detection via constructing versatile pedestrian knowledge bank. Pattern Recognit. 2024, 153, 110539. [Google Scholar] [CrossRef]
- Milanés, V.; Llorca, D.F.; Villagrá, J.; Pérez, J.; Parra, I.; González, C.; Sotelo, M.A. Vision-based active safety system for automatic stopping. Expert Syst. Appl. 2012, 39, 11234–11242. [Google Scholar] [CrossRef]
- Socha, K.; Borg, M.; Henriksson, J. SMIRK: A machine learning-based pedestrian automatic emergency braking system with a complete safety case. Softw. Impacts 2022, 13, 100352. [Google Scholar] [CrossRef]
- Patil, P.W.; Dudhane, A.; Kulkarni, A.; Murala, S.; Gonde, A.B.; Gupta, S. An Unified Recurrent Video Object Segmentation Framework for Various Surveillance Environments. IEEE Trans. Image Process. 2021, 30, 7889–7902. [Google Scholar] [CrossRef]
- Patil, P.; Singh, J.; Hambarde, P.; Kulkarni, A.; Chaudhary, S.; Murala, S. Robust Unseen Video Understanding for Various Surveillance Environments. In Proceedings of the 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Madrid, Spain, 29 November–2 December 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, K.; Wang, C.; Luo, W.; Li, H.; Jin, Z. MB-TaylorFormer: Multi-branch Efficient Transformer Expanded by Taylor Formula for Image Dehazing. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 12756–12767. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar] [CrossRef]
- Ngo, D.; Lee, G.D.; Kang, B. Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation. Sensors 2021, 21, 3896. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ngo, D.; Kang, B. Design of an FPGA-Based High-Quality Real-Time Autonomous Dehazing System. Remote Sens. 2022, 14, 1852. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S. Visibility: How Applicable is the Century-Old Koschmieder Model? J. Atmos. Sci. 2016, 73, 4573–4581. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [CrossRef]
- Tang, Q.; Yang, J.; He, X.; Jia, W.; Zhang, Q.; Liu, H. Nighttime image dehazing based on Retinex and dark channel prior using Taylor series expansion. Comput. Vis. Image Underst. 2021, 202, 103086. [Google Scholar] [CrossRef]
- Dwivedi, P.; Chakraborty, S. Single image dehazing using extended local dark channel prior. Image Vis. Comput. 2023, 136, 104747. [Google Scholar] [CrossRef]
- Liang, S.; Gao, T.; Chen, T.; Cheng, P. A Remote Sensing Image Dehazing Method Based on Heterogeneous Priors. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5619513. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.; Lee, G.D.; Kang, B. Improved Color Attenuation Prior for Single-Image Haze Removal. Appl. Sci. 2019, 9, 4011. [Google Scholar] [CrossRef]
- Ngo, D.; Lee, G.D.; Kang, B. Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion. IEEE Access 2022, 10, 102462–102474. [Google Scholar] [CrossRef]
- Ngo, D.; Kang, B. A Symmetric Multiprocessor System-on-a-Chip-Based Solution for Real-Time Image Dehazing. Symmetry 2024, 16, 653. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Single Image Dehazing Using Haze-Lines. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 720–734. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Y.; Wei, H.; Li, Y.; Qi, G.; Mazur, N.; Li, Y.; Li, P. Atmospheric Light Estimation Based Remote Sensing Image Dehazing. Remote Sens. 2021, 13, 2432. [Google Scholar] [CrossRef]
- Ling, P.; Chen, H.; Tan, X.; Jin, Y.; Chen, E. Atmospheric Light Estimation Based Remote Sensing Image Dehazing. IEEE Trans. Image Process. 2023, 32, 3238–3253. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Jin, X. Thermal Infrared Guided Color Image Dehazing. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 2465–2469. [Google Scholar] [CrossRef]
- Bui, T.M.; Kim, W. Single Image Dehazing Using Color Ellipsoid Prior. IEEE Trans. Image Process. 2018, 27, 999–1009. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Zhang, R.; Wang, L.; Zhang, R.; Liu, X. Heterogeneity constrained color ellipsoid prior image dehazing algorithm. J. Vis. Commun. Image Represent. 2024, 101, 104177. [Google Scholar] [CrossRef]
- Qiu, Z.; Gong, T.; Liang, Z.; Chen, T.; Cong, R.; Bai, H.; Zhao, Y. Perception-Oriented UAV Image Dehazing Based on Super-Pixel Scene Prior. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5913519. [Google Scholar] [CrossRef]
- Liu, J.; Liu, R.W.; Sun, J.; Zeng, T. Rank-One Prior: Real-Time Scene Recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 8845–8860. [Google Scholar] [CrossRef] [PubMed]
- Galdran, A. Image dehazing by artificial multiple-exposure image fusion. Signal Process. 2018, 149, 135–147. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; De Vleeschouwer, C.; Bovik, A.C. Day and Night-Time Dehazing by Local Airlight Estimation. IEEE Trans. Image Process. 2020, 29, 6264–6275. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Pan, J.; Zhang, H.; Cao, X.; Yang, M.H. Single Image Dehazing via Multi-scale Convolutional Neural Networks with Holistic Edges. Int. J. Comput. Vis. 2020, 128, 240–259. [Google Scholar] [CrossRef]
- Dong, H.; Pan, J.; Xiang, L.; Hu, Z.; Zhang, X.; Wang, F.; Yang, M.H. Multi-Scale Boosted Dehazing Network With Dense Feature Fusion. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2154–2164. [Google Scholar] [CrossRef]
- Li, B.; Gou, Y.; Gu, S.; Liu, J.Z.; Zhou, J.T.; Peng, X. You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network. Int. J. Comput. Vis. 2021, 129, 1754–1767. [Google Scholar] [CrossRef]
- Li, B.; Gou, Y.; Liu, J.Z.; Zhu, H.; Zhou, J.T.; Peng, X. Zero-Shot Image Dehazing. IEEE Trans. Image Process. 2020, 29, 8457–8466. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, C.; Liu, R.; Zhang, L.; Guo, X.; Tao, D. Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 2027–2036. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, C.L.; Guo, X. Depth-Aware Unpaired Video Dehazing. IEEE Trans. Image Process. 2024, 33, 2388–2403. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Xie, F.; Qiu, L.; Zhang, X.; Shi, Z. Robust Haze and Thin Cloud Removal via Conditional Variational Autoencoders. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5604616. [Google Scholar] [CrossRef]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision Transformers for Single Image Dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Z.; Xiong, S.; Sun, T. Diffusion Models Based Null-Space Learning for Remote Sensing Image Dehazing. IEEE Geosci. Remote Sens. Lett. 2024, 21, 8001305. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; Van Gool, L.; Zhang, L.; Yang, M.H.; Guo, T.; Li, X.; Cherukuri, V.; Monga, V.; et al. NTIRE 2019 Image Dehazing Challenge Report. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 2241–2253. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Vasluianu, F.A.; Timofte, R.; Liu, J.; Wu, H.; Xie, Y.; Qu, Y.; Ma, L.; Huang, Z.; et al. NTIRE 2020 Challenge on NonHomogeneous Dehazing. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 2029–2044. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhan, J.; He, S.; Dong, J.; Du, Y. Curricular Contrastive Regularization for Physics-Aware Single Image Dehazing. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 5785–5794. [Google Scholar] [CrossRef]
- Wu, R.Q.; Duan, Z.P.; Guo, C.L.; Chai, Z.; Li, C. RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 22282–22291. [Google Scholar] [CrossRef]
- Ngo, D.; Lee, S.; Lee, G.D.; Kang, B. Single-Image Visibility Restoration: A Machine Learning Approach and Its 4K-Capable Hardware Accelerator. Sensors 2020, 20, 5795. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.; Lee, S.; Kang, U.J.; Ngo, T.M.; Lee, G.D.; Kang, B. Adapting a Dehazing System to Haze Conditions by Piece-Wisely Linearizing a Depth Estimator. Sensors 2022, 22, 1957. [Google Scholar] [CrossRef] [PubMed]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. O-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Outdoor Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 867–8678. [Google Scholar] [CrossRef]
- Tarel, J.P.; Hautiere, N.; Caraffa, L.; Cord, A.; Halmaoui, H.; Gruyer, D. Vision Enhancement in Homogeneous and Heterogeneous Fog. IEEE Intell. Transp. Syst. Mag. 2012, 4, 6–20. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; De Vleeschouwer, C. D-HAZY: A dataset to evaluate quantitatively dehazing algorithms. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2226–2230. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; Timofte, R.; Van Gool, L.; Zhang, L.; Yang, M.H.; Patel, V.M.; Zhang, H.; Sindagi, V.A.; Zhao, R.; et al. NTIRE 2018 Challenge on Image Dehazing: Methods and Results. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1004–100410. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Yeganeh, H.; Wang, Z. Objective Quality Assessment of Tone-Mapped Images. IEEE Trans. Image Process. 2013, 22, 657–667. [Google Scholar] [CrossRef] [PubMed]
Channel | Input | Before ATR | After ATR | Improvement |
---|---|---|---|---|
Red | 11.4079 dB | 23.9731 dB | 24.1545 dB | 0.1814 dB |
Green | 9.9153 dB | 17.9525 dB | 18.2054 dB | 0.2529 dB |
Blue | 7.2273 dB | 12.4140 dB | 13.1670 dB | 0.7530 dB |
Dataset | Hazy (#) | Haze-Free (#) | Description |
---|---|---|---|
FRIDA2 [48] | 264 | 66 | Synthetic road scene images |
D-HAZY [49] | 1472 | 1472 | Synthetic indoor images |
O-HAZE [47] | 45 | 45 | Real outdoor images |
I-HAZE [50] | 30 | 30 | Real indoor images |
Dense-Haze [41] | 55 | 55 | Real indoor and outdoor images |
Total | 1866 | 1668 |
Method | DCP | CAP | DehazeNet | YOLY | MB-TF | Proposed | |
---|---|---|---|---|---|---|---|
Dataset | |||||||
FSIMc | FRIDA2 | 0.7746 | 0.7918 | 0.7963 | 0.7849 | 0.7158 | 0.8024 |
D-HAZY | 0.9002 | 0.8880 | 0.8874 | 0.7383 | 0.7727 | 0.8773 | |
O-HAZE | 0.8423 | 0.7738 | 0.7865 | 0.6997 | 0.8420 | 0.8320 | |
I-HAZE | 0.8208 | 0.8252 | 0.8482 | 0.7564 | 0.8692 | 0.8727 | |
Dense-Haze | 0.6419 | 0.5773 | 0.5573 | 0.5763 | 0.7976 | 0.5869 | |
Total | 0.7746 | 0.7693 | 0.7725 | 0.7111 | 0.7544 | 0.7863 | |
TMQI | FRIDA2 | 0.7291 | 0.7385 | 0.7366 | 0.7176 | 0.7631 | 0.7374 |
D-HAZY | 0.8631 | 0.8206 | 0.7966 | 0.6817 | 0.7428 | 0.7913 | |
O-HAZE | 0.8403 | 0.8118 | 0.8413 | 0.6566 | 0.8732 | 0.9058 | |
I-HAZE | 0.7319 | 0.7512 | 0.7598 | 0.6936 | 0.8655 | 0.8334 | |
Dense-Haze | 0.6383 | 0.5955 | 0.5723 | 0.5107 | 0.7237 | 0.6124 | |
Total | 0.7357 | 0.7336 | 0.7312 | 0.6520 | 0.7761 | 0.7489 |
Resolution | VGA | SVGA | HD | FHD | DCI 4K | 8K UHD | |
---|---|---|---|---|---|---|---|
Method | |||||||
DCP | 12.64 | 19.94 | 32.37 | 94.25 | 470.21 | NA (REx) | |
CAP | 0.22 | 0.34 | 0.64 | 1.51 | 6.39 | 25.20 | |
DehazeNet | 1.53 | 2.39 | 3.88 | 10.68 | 47.35 | 178.81 | |
YOLY | 188.03 | 398.28 | 728.83 | 1875.56 | NA (MEx) | NA (MEx) | |
MB-TaylorFormer | 36.17 | 52.88 | 92.38 | 226.68 | NA (REx) | NA (REx) | |
Proposed | 0.80 | 1.02 | 1.60 | 3.32 | 14.74 | 53.28 |
Case | Haze-Free | Thin | Moderate | Dense | |||||
---|---|---|---|---|---|---|---|---|---|
Method | Airplane (#) | Failure (#) | Airplane (#) | Failure (#) | Airplane (#) | Failure (#) | Airplane (#) | Failure (#) | |
Input | 5 | 2 | 5 | 2 | 4 | 1 | 2 | 0 | |
DCP | 4 | 1 | 5 | 3 | 4 | 1 | 2 | 1 | |
CAP | 3 | 3 | 3 | 3 | 5 | 2 | 2 | 0 | |
DehazeNet | 4 | 2 | 4 | 3 | 6 | 2 | 2 | 0 | |
YOLY | 0 | 1 | 0 | 1 | 3 | 1 | 0 | 0 | |
MB-TaylorFormer | 1 | 3 | 1 | 2 | 4 | 0 | 4 | 0 | |
Proposed | 5 | 2 | 6 | 3 | 7 | 0 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Ngo, D.; Choi, Y.; Kang, B. Autonomous Single-Image Dehazing: Enhancing Local Texture with Haze Density-Aware Image Blending. Remote Sens. 2024, 16, 3641. https://doi.org/10.3390/rs16193641
Han S, Ngo D, Choi Y, Kang B. Autonomous Single-Image Dehazing: Enhancing Local Texture with Haze Density-Aware Image Blending. Remote Sensing. 2024; 16(19):3641. https://doi.org/10.3390/rs16193641
Chicago/Turabian StyleHan, Siyeon, Dat Ngo, Yeonggyu Choi, and Bongsoon Kang. 2024. "Autonomous Single-Image Dehazing: Enhancing Local Texture with Haze Density-Aware Image Blending" Remote Sensing 16, no. 19: 3641. https://doi.org/10.3390/rs16193641
APA StyleHan, S., Ngo, D., Choi, Y., & Kang, B. (2024). Autonomous Single-Image Dehazing: Enhancing Local Texture with Haze Density-Aware Image Blending. Remote Sensing, 16(19), 3641. https://doi.org/10.3390/rs16193641