Continuous Monitoring of Forests in Wetland Ecosystems with Remote Sensing and Probability Sampling
Abstract
:1. Introduction
2. Materials
2.1. Study Area and Field Data
2.2. Remotely Sensed Auxiliary Data
3. Methods
3.1. Overview
3.2. Interannual Change Monitoring
3.2.1. With Expansion Estimator
3.2.2. With Indirect Model-Assisted Regression Estimator
3.3. Year-Specific Monitoring
3.3.1. With Expansion Estimator
3.3.2. With Model-Assisted Estimator
3.4. Modeling
3.5. Sampling Precision
3.6. Sample Size Optimization with Monte Carlo
4. Results and Discussion
4.1. Model Forms
4.2. Year-Specific Monitoring
4.3. Interannual Change Monitoring
4.4. Optimization for Sample Size
4.5. Implication to Wetland Biomass Management
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, R.C.; Finlayson, M. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People 2018; Secretariat of the Ramsar Convention: Gland, Switzerland, 2018. [Google Scholar]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Zedler, J.B.; Kercher, S.M. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Hou, Z.; McRoberts, R.E.; Zhang, C.; Ståhl, G.; Zhao, X.; Wang, X.; Li, B.; Xu, Q. Cross-classes domain inference with network sampling for natural resource inventory. For. Ecosyst. 2022, 9, 100029. [Google Scholar] [CrossRef]
- Carnell, P.E.; Windecker, S.M.; Brenker, M.; Baldock, J.; Masque, P.; Brunt, K.; Macreadie, P.I. Carbon stocks, sequestration, and emissions of wetlands in south eastern Australia. Glob. Chang. Biol. 2018, 24, 4173–4184. [Google Scholar] [CrossRef]
- Bu, X.; Dong, S.; Mi, W.; Fujia, L. Spatial-temporal change of carbon storage and sink of wetland ecosystem in arid regions, Ningxia Plain. Atmos. Environ. 2019, 204, 89–101. [Google Scholar]
- Qian, L.; Yan, J.; Hu, Y.; Gao, L.; Wu, P.; Wang, L. Spatial distribution patterns of annual soil carbon accumulation and carbon storage in the Jiuduansha wetland of the Yangtze River estuary. Environ. Monit. Assess. 2019, 191, 750. [Google Scholar] [CrossRef]
- Vinod, K.; Asokan, P.K.; Zacharia, P.U.; Ansar, C.P.; Vijayan, G.; Anasukoya, A.; Koya, V.A.K.; Nikhiljith, M. Assessment of biomass and carbon stocks in mangroves of Thalassery estuarine wetland of Kerala, south west coast of India. J. Coast. Res. 2019, 86, 209–217. [Google Scholar] [CrossRef]
- Maziarz, J.; Vourlitis, G.L.; Kristan, W. Carbon and nitrogen storage of constructed and natural freshwater wetlands in southern California. Ecol. Eng. 2019, 142, 100008. [Google Scholar] [CrossRef]
- Thomas, N.M.; Simard, M.; Castañeda-Moya, E.; Byrd, K.B.; Windham-Myers, L.; Bevington, A.; Twilley, R.R. High-resolution mapping of biomass and distribution of marsh and forested wetlands in southeastern coastal Louisiana. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 257–267. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Hou, Z.; McRoberts, R.E.; Ståhl, G.; Packalen, P.; Greenberg, J.A.; Xu, Q. How much can natural resource inventory benefit from finer resolution auxiliary data? Remote Sens. Environ. 2018, 209, 31–40. [Google Scholar] [CrossRef]
- Sthl, G.; Saarela, S.; Schnell, S.; Holm, S.; Breidenbach, J.; Phealey, S.; patterson, P.L.; Magnussen, S.; Naesset, E.; Emcroberts, R. Use of models in large-area forest surveys: Comparing model-assisted, model-based and hybrid estimation. For. Ecosyst. 2016, 3, 5. [Google Scholar] [CrossRef]
- Magnussen, S.; Næsset, E.; Gobakken, T. LiDAR-supported estimation of change in forest biomass with time-invariant regression models. Can. J. For. Res. 2015, 45, 1514–1523. [Google Scholar] [CrossRef]
- Hou, Z.; Xu, Q.; McRoberts, R.E.; Greenberg, J.A.; Liu, J.; Heiskanen, J.; Pitkänen, S.; Packalen, P. Effects of temporally external auxiliary data on model-based inference. Remote Sens. Environ. 2017, 198, 150–159. [Google Scholar] [CrossRef]
- Andersen, H.E.; Strunk, J.; Temesgen, H. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the Upper Tanana Valley of Interior Alaska. West. J. Appl. For. 2011, 26, 157–164. [Google Scholar] [CrossRef]
- Gregoire, T.G.; Ståhl, G.; Næsset, E.; Gobakken, T.; Nelson, R.F.; Holm, S. Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Can. J. For. Res. 2011, 41, 83–95. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E.; Nelson, R.F.; Bollandsås, O.M.; Gregoire, T.G.; Ståhl, G.; Holm, S.; Ørka, H.O.; Astrup, R. Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sens. Environ. 2012, 123, 443–456. [Google Scholar] [CrossRef]
- Saarela, S.; Grafström, A.; Ståhl, G.; Kangas, A.S.; Holopainen, M.; Tuominen, S.; Nordkvist, K.; Hyyppä, J. Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information. Remote Sens. Environ. 2015, 158, 431–440. [Google Scholar] [CrossRef]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Gregoire, T.G.; Ståhl, G. Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”. Remote Sens. Environ. 2013, 128, 299–314. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T.; Bollandsås, O.M. Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data. Remote Sens. Environ. 2015, 164, 36–42. [Google Scholar] [CrossRef]
- Breidt, F.J.; Opsomer, J.D. Model-assisted survey estimation with modern prediction techniques. Stat. Sci. 2017, 32, 190–205. [Google Scholar] [CrossRef]
- Kangas, A.; Myllymäki, M.; Gobakken, T.; Næsset, E. Model-assisted forest inventory with parametric, semiparametric, and nonparametric models. Can. J. For. Res. 2016, 46, 855–868. [Google Scholar] [CrossRef]
- Särndal, C.E.; Swensson, B.; Wretman, J.H. Model Assisted Survey Sampling; Springer: New York, NY, USA, 1992. [Google Scholar]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- Shu, Q.; Xi, L.; Wang, K.; Xie, F.; Pang, Y.; Song, H. Optimization of samples for remote sensing estimation of forest aboveground biomass at the regional scale. Remote Sens. 2022, 14, 4187. [Google Scholar] [CrossRef]
- Zhao, C.; Qian, S.; Meng, C.; Chang, Y.; Guo, W.; Wang, S.; Sun, Y. Blue-Green Space Changes of Baiyangdian Wetland in Xiong’an New Area, China. Adv. Meteorol. 2022, 2022, 4873393. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, P.; Wang, Q.; Wu, Y.; Ding, Y.; Nabi, M.; Fu, C.; Wang, H.; Wang, Q. How does water diversion affect land use change and ecosystem service: A case study of Baiyangdian wetland, China. J. Environ. Manag. 2023, 344, 118558. [Google Scholar] [CrossRef]
- Guo, C.; Zhao, D.; Wu, D. Long-term evolution and driving mechanisms of the Baiyangdian wetland based on land cover frequency characteristics. J. Freshw. Ecol. 2024, 39, 2327279. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Lu, J.; Li, H.; Zhu, J.; Lv, X. Simulation of the effect of artificial water transfer on carbon stock of Phragmites australis in the Baiyangdian Wetland, China. Scientifica 2017, 2017, 7905710. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, P.; Zhang, G.; Wang, S.; Cai, Y.; Wang, H. Vertical microplastic distribution in sediments of Fuhe River estuary to Baiyangdian Wetland in Northern China. Chemosphere 2021, 280, 130800. [Google Scholar] [CrossRef]
- Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E.; Sumner, M.; Hijmans, R.; Baston, D.; Rouault, E.; Warmerdam, F.; Ooms, J.; et al. rgdal: Bindings for the ’Geospatial’ Data Abstraction Library. R package version 1.6-5. 2013. Available online: https://CRAN.Rproject.org/package=rgdal (accessed on 1 September 2024).
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Normalized-difference snow index (NDSI). In Encyclopedia of Snow, Ice and Glaciers; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Key, C.H.; Benson, N.C. Measuring and remote sensing of burn severity. In Proceedings of the Joint Fire Science Conference and Workshop, Boise, Idaho, 15–17 June 1999. [Google Scholar]
- Thompson, S.K. Sampling; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; Mcroberts, R.E. National Forest Inventories; Pathways for Common Reporting; European Science Foundation: Strasbourg, France, 2010; Volume 1, pp. 541–553. [Google Scholar]
- Vidal, C.; Alberdi, C.; Hernández, L.; Redmond, J. National Forest Inventories; Assessment of Wood Availability and Use; Springer: Cham, Switzerland, 2016; Volume 10, p. 261. [Google Scholar]
- McRoberts, R.E. Probability-and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens. Environ. 2010, 114, 1017–1025. [Google Scholar] [CrossRef]
- Hou, Z.; Xu, Q.; Hartikainen, S.; Antilla, P.; Packalen, T.; Maltamo, M.; Tokola, T. Impact of plot size and spatial pattern of forest attributes on sampling efficacy. For. Sci. 2015, 61, 847–860. [Google Scholar] [CrossRef]
- Hou, Z.; Yuan, K.; Ståhl, G.; McRoberts, R.E.; Kangas, A.; Tang, H.; Jiang, J.; Meng, J.; Xu, Q.; Li, Z. Conjugating remotely sensed data assimilation and model-assisted estimation for efficient multivariate forest inventory. Remote Sens. Environ. 2023, 299, 113854. [Google Scholar] [CrossRef]
- Mandallaz, D. Sampling Techniques for Forest Inventories; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Särndal, C.E. Design-consistent versus model-dependent estimation for small domains. J. Am. Stat. Assoc. 1984, 79, 624–631. [Google Scholar]
- Särndal, C.E. Combined inference in survey sampling. Pak. J. Stat. 2011, 27, 359. [Google Scholar]
- Baffetta, F.; Fattorini, L.; Franceschi, S. Corona, P. Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys. Remote Sens. Environ. 2009, 113, 463–475. [Google Scholar] [CrossRef]
- Mandallaz, D.; Breschan, J.; Hill, A. New regression estimators in forest inventories with two-phase sampling and partially exhaustive information: A design-based Monte Carlo approach with applications to small-area estimation. Can. J. For. Res. 2013, 43, 1023–1031. [Google Scholar] [CrossRef]
- Gregoire, T.G.; Næsset, E.; McRoberts, R.E.; Ståhl, G.; Andersen, H.; Gobakken, T.; Ene, L.T.; Nelson, R.F. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sens. Environ. 2016, 173, 98–108. [Google Scholar] [CrossRef]
- Rizopoulos, D. Model Selection by Bootstrapping the StepAIC Procedure. 2022. Available online: https://cran.r-project.org/web/packages/bootStepAIC/index.html (accessed on 13 June 2024).
- Carroll, R.J.; Ruppert, D. Transformation and Weighting in Regression; Chapman and Hall: New York, NY, USA, 1988. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-Plus; Springer Inc.: New York, NY, USA, 2000. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Estimation for inaccessible and non-sampled forest areas using model-based inference and remotely sensed auxiliary information. Remote Sens. Environ. 2014, 154, 226–233. [Google Scholar] [CrossRef]
- Harrison, R.L. Introduction to Monte Carlo Simulation. AIP Conf. Proc. 2010, 1204, 17–21. [Google Scholar]
- Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- McRoberts, R.E.; Næsset, E.; Heikkinen, J.; Chen, Q.; Strîmbu, V.; Esteban, J.; Hou, Z.; Giannetti, F.; Mohammadi, J.; Chirici, G. On the model-assisted regression estimators using remotely sensed auxiliary data. Remote Sens. Environ. 2022, 281, 113168. [Google Scholar] [CrossRef]
- Nag, S.K.; Liu, R.; Lal, R. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio. Environ. Monit. Assess. 2017, 189, 580. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley & Sons: New York, NY, USA, 2007; pp. 43–104. [Google Scholar]
- Batson, J.; Noe, G.B.; Hupp, C.R.; Krauss, K.W.; Rybicki, N.B.; Schenk, E.R. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland. J. Geophys. Res. Biogeosci. 2015, 120, 77–95. [Google Scholar] [CrossRef]
- Wang, B.; Mu, C.; Lu, H.; Li, N.; Zhang, Y.; Ma, L. Ecosystem carbon storage and sink/source of temperate forested wetlands in Xiaoxing’anling, northeast China. J. For. Res. 2022, 33, 839–849. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Shangguan, Z. Dynamics of forest biomass carbon stocks from 1949 to 2008 in Henan Province, east-central China. J. For. Res. 2018, 29, 439–448. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, D.; Fang, L.; Xu, A.; Lou, X. A Levenberg–Marquardt backpropagation neural network for predicting forest growing stock based on the least-squares equation fitting parameters. Forests 2018, 9, 757. [Google Scholar] [CrossRef]
- Platt, W.J.; Connell, J.H. Natural disturbances and directional replacement of species. Ecol. Monogr. 2003, 73, 507–522. [Google Scholar] [CrossRef]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Solberg, S.Ø.; McRoberts, R.E. The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data. Remote Sens. Environ. 2015, 168, 252–264. [Google Scholar] [CrossRef]
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef]
- Temmink RJ, M.; Lamers LP, M.; Angelini, C.; Bouma, T.J.; Fritz, C.; van de Koppel, J.; Lexmond, R.; Rietkerk, M.; Silliman, B.R.; Joosten, H.; et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 2022, 376, eabn1479. [Google Scholar] [CrossRef]
- Harmon, K.W. Impacts of wetland losses on wildlife. In Selected Proceedings of the Midwest Conference on Wetland Values and Management; Richardson, B., Ed.; Minnesota Water Planning Board: St. Paul, MN, USA, 1981; pp. 347–353. [Google Scholar]
- Weller, M.W. Estimating wildlife and wetland losses due to drainage and other perturbations. In Selected Proceedings of the Midwest Conference on Wetland Values and Management; Richardson, B., Ed.; Minnesota Water Planning Board: St. Paul, MN, USA, 1981; pp. 337–346. [Google Scholar]
- Whiting, G.J.; Chanton, J.P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B 2001, 53, 521–528. [Google Scholar] [CrossRef]
- Zhang, J.; Song, C.; Yang, W. Cold season CH4, CO2 and N2O fluxes from freshwater marshes in northeast China. Chemosphere 2005, 59, 1703–1705. [Google Scholar] [CrossRef] [PubMed]
Spectral Indices | Formula | References |
---|---|---|
Normalized Difference Water Index (NDWI) | (NIR - SWIR2)/(NIR + SWIR) | Gao [33] |
Green Chlorophyll index (Clgreen) | NIR /Green − 1 | Gitelson et al. [34] |
Red edge Chlorophyll Index (Clre) | NIR /RedEdge − 1 | Gitelson et al. [34] |
Normalized Difference Snow Index (NDSI) | (Green - SWIR)/(Green + SWIR) | Hall and Riggs [35] |
Normalized Burn Ratio (NBR) | (NIR - SWIR)/(NIR + SWIR) | Key and Benson [36] |
Model | RMSE (t/ha) | rRMSE | Independent Variable | Estimate | Standard Error |
---|---|---|---|---|---|
Model-2022 | 165.18 | 73.64 | (Intercept) | 533.45 | 273.09 |
NDSI.mean | −2013.84 | 598.60 | |||
NBR.homogeneity | −452.69 | 131.26 | |||
CIgreen.variance | −2.37 | 0.71 | |||
CIre.mean | 4191.05 | 833.32 | |||
Model-2023 | 172.58 | 70.87 | (Intercept) | 156.72 | 61.79 |
X2022pre.y | 0.77 | 0.15 | |||
NDWI.homogeneity | −198.06 | 97.42 |
Year | Estimator | Model | (%) | ||
---|---|---|---|---|---|
2022 | Expansion estimator | NA | 224.31 | 338.36 | 91.80 |
MA estimator | Model-2022 | 224.34 | 247.19 | 92.99 | |
2023 | Expansion estimator | NA | 243.51 | 364.92 | 92.16 |
MA estimator | Model-2023 | 243.64 | 269.83 | 93.26 |
Estimator | (%) | ||
---|---|---|---|
Expansion estimator | 19.21 | 16.11 | 79.10 |
Indirect MA estimator | 19.30 | 15.85 | 79.38 |
Expansion Estimator | MA Estimator | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ds | P (%) | P (%) | ||||||||||||
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
100 | 37.88 | 39.34 | 224.35 | 243.55 | 375.96 | 405.45 | 91.36 | 91.73 | 224.29 | 243.55 | 273.41 | 299.28 | 92.63 | 92.90 |
90 | 39.93 | 41.46 | 224.26 | 243.52 | 416.88 | 450.53 | 90.89 | 91.28 | 224.37 | 243.46 | 302.96 | 331.92 | 92.24 | 92.52 |
80 | 42.35 | 43.98 | 224.30 | 243.54 | 470.00 | 506.56 | 90.33 | 90.76 | 224.25 | 243.46 | 338.79 | 373.16 | 91.79 | 92.07 |
70 | 45.27 | 47.02 | 224.39 | 243.30 | 538.57 | 578.43 | 89.66 | 90.12 | 224.13 | 243.31 | 384.77 | 425.03 | 91.25 | 91.53 |
60 | 48.90 | 50.78 | 224.57 | 243.52 | 627.90 | 676.00 | 88.84 | 89.32 | 224.06 | 243.49 | 445.42 | 493.63 | 90.58 | 90.88 |
50 | 53.57 | 55.63 | 224.50 | 243.45 | 752.60 | 810.73 | 87.78 | 88.30 | 223.86 | 242.94 | 528.39 | 590.10 | 89.73 | 90.00 |
40 | 59.89 | 62.20 | 224.26 | 243.55 | 941.20 | 1015.48 | 86.32 | 86.92 | 224.34 | 242.44 | 648.47 | 732.95 | 88.65 | 88.83 |
Expansion Estimator | Indirect MA Estimator | ||||||
---|---|---|---|---|---|---|---|
(%) | |||||||
100 | 8.25 | 19.19 | 17.83 | 77.99 | 19.29 | 17.61 | 78.25 |
90 | 8.70 | 19.18 | 19.83 | 76.79 | 19.32 | 19.54 | 77.13 |
80 | 9.23 | 19.21 | 22.29 | 75.43 | 19.21 | 22.03 | 75.57 |
70 | 9.86 | 19.10 | 25.45 | 73.59 | 19.40 | 25.16 | 74.14 |
60 | 10.65 | 19.17 | 29.81 | 71.52 | 19.20 | 29.49 | 71.72 |
50 | 11.67 | 19.18 | 35.76 | 68.82 | 19.34 | 35.49 | 69.20 |
40 | 13.05 | 19.19 | 44.65 | 65.19 | 19.38 | 44.91 | 65.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, A.; Cheng, X.; Cao, R.; Huang, L.; Hou, Z. Continuous Monitoring of Forests in Wetland Ecosystems with Remote Sensing and Probability Sampling. Remote Sens. 2024, 16, 3508. https://doi.org/10.3390/rs16183508
Zhao A, Cheng X, Cao R, Huang L, Hou Z. Continuous Monitoring of Forests in Wetland Ecosystems with Remote Sensing and Probability Sampling. Remote Sensing. 2024; 16(18):3508. https://doi.org/10.3390/rs16183508
Chicago/Turabian StyleZhao, Aoyun, Xinjie Cheng, Rong Cao, Liuyuan Huang, and Zhengyang Hou. 2024. "Continuous Monitoring of Forests in Wetland Ecosystems with Remote Sensing and Probability Sampling" Remote Sensing 16, no. 18: 3508. https://doi.org/10.3390/rs16183508
APA StyleZhao, A., Cheng, X., Cao, R., Huang, L., & Hou, Z. (2024). Continuous Monitoring of Forests in Wetland Ecosystems with Remote Sensing and Probability Sampling. Remote Sensing, 16(18), 3508. https://doi.org/10.3390/rs16183508