Variation in Vegetation Composition and Structure across Mudflat Areas in the Yellow River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Platform and Sensors
2.3. Data Collection and Preprocessing
2.4. Vegetation Composition Identification
2.5. Spatial Analyses
3. Results
3.1. Vegetation Composition Classification and Accuracy Assessment
3.2. Vegetation Composition and Structure across Mudflat Areas
3.3. Differences in Vegetation Composition and Structure between the Different Subareas
4. Discussion
4.1. Vegetation Classification
4.2. Vegetation Composition
4.3. Vegetation Structure
4.4. Vegetation Pattern
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Vegetation Composition of the Seven Subareas in the Study Area
References
- Middleton, S.L. Automating image segmentation for vegetation monitoring. Nat. Rev. Earth Environ. 2023, 4, 807. [Google Scholar] [CrossRef]
- Bordeu, I.; Clerc, M.G.; Couteron, P.; Lefever, R.; Tlidi, M. Self-replication of localized vegetation patches in scarce environments. Sci. Rep. 2016, 6, 33703. [Google Scholar] [CrossRef] [PubMed]
- Berdugo, M.; Kefi, S.; Soliveres, S.; Maestre, F.T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 2017, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, P.; Iams, S.; Bonetti, S.; Silber, M. Vegetation Pattern Formation in Drylands. In Dryland Ecohydrology, 2nd ed.; D’Odoorico, P., Porporato, A., Runyan, C.W., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 469–509. [Google Scholar]
- Pringle, R.M.; Tarnita, C.E. Spatial self-organization of ecosystems: Integrating multiple mechanisms of regular-pattern formation. Annu. Rev. Entomol. 2017, 62, 359–377. [Google Scholar] [CrossRef]
- Meron, E. Vegetation pattern formation: The mechanisms behind the forms. Phys. Today 2019, 72, 30–36. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nystrom, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Ruiz-Jaen, M.C.; Aide, T.M. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. For. Ecol. Manag. 2005, 218, 159–173. [Google Scholar] [CrossRef]
- Bautista, S.; Mayor, A.G.; Bourakhouadar, J.; Bellot, J. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 2007, 10, 987–998. [Google Scholar] [CrossRef]
- DeMeo, T.E.; Manning, M.M.; Rowland, M.M.; Vojta, C.D.; McKelvey, K.S.; Brewer, C.K.; Kennedy, R.S.H.; Maus, P.A.; Schulz, B.; Westfall, J.A.; et al. Monitoring Vegetation Composition and Structure as Habitat Attributes. In A Technical Guide for Monitoring Wildlife Habitat; Rowland, M.M., Vojta, C.D., Eds.; General Technical Reports WO-89: Washington, DC, USA, 2013; pp. 4-1–4-63. [Google Scholar]
- Gaitan, J.J.; Oliva, G.E.; Bran, D.E.; Maestre, F.T.; Aguiar, M.R.; Jobbagy, E.G.; Nuono, G.G.; Ferrante, D.; Nakamatsu, V.B.; Ciari, G.; et al. Vegetion structure is as important as climate for explaining ecosystem function across Patagonian rangelands. J. Ecol. 2014, 102, 1419–1428. [Google Scholar] [CrossRef]
- Meloni, F.; Nakamura, G.M.; Granzotti, C.R.F.; Martinez, A.S. Vegetation cover reveals the phase diagram of patch patterns in drylands. Phys. A 2019, 534, 122048. [Google Scholar] [CrossRef]
- Kefi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; Elaich, A.; de Ruiter, P.C. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 2007, 449, 213–217. [Google Scholar] [CrossRef]
- Abu Hammad, A.; Tumeizi, A. Land degradation: Socioeconomic and environmental causes and consequences in the eastern Mediterranean. Land. Degrad. Dev. 2012, 23, 216–226. [Google Scholar] [CrossRef]
- Kefi, S.; Guttal, V.; Brock, W.A.; Carpenter, S.R.; Ellison, M.A.; Livina, V.N.; Seekell, D.A.; Scheffer, M.; van Nes, E.H.; Dakos, V. Early warning signals of ecological transitions: Methods for spatial pattern. PLoS ONE 2014, 9, e92097. [Google Scholar] [CrossRef]
- Giriraj, A.; Murthy, M.S.R.; Ramesh, B.R. Vegetation composition, structure and patterns of diversity: A case study from the tropical wet evergreen forests of the western Ghats, India. Edinb. J. Bot. 2008, 65, 447–468. [Google Scholar] [CrossRef]
- Tang, J.; Liang, J.; Yang, Y.; Zhang, S.; Hou, H.; Zhu, X. Revealing the structure and composition of the restored vegetation cover in semi-arid mine dumps based on LiDAR and hyperspectral images. Remote Sens. 2022, 14, 978. [Google Scholar] [CrossRef]
- James, K.; Bradshaw, K. Detecting plant species in the field with deep learning and drone technology. Methods Ecol. Evol. 2020, 11, 1509–1519. [Google Scholar] [CrossRef]
- Taddeo, S.; Dronova, I.; Depsky, N. Spectral vegetation indices of wetland greenness: Response to vegetation structure, composition, and spatial distribution. Remote Sens. Environ. 2019, 234, 111467. [Google Scholar] [CrossRef]
- Mullerova, J.; Gago, X.; Bucas, M.; Company, J.; Estrany, J.; Fortesa, J.; Manfreda, S.; Michez, A.; Mokros, M.; Pauluse, G.; et al. Characterizing vegetation complexity with unmanned aerial systems (UAV)-a framework and synthesis. Ecol. Indic. 2021, 131, 108156. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Schneider, F.D.; Santos, M.J.; Armstrong, A.; Carnaval, A.; Dahlin, K.M.; Fatoyinbo, L.; Hurtt, G.C.; Schimel, D.; Townsend, P.A.; et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 2022, 6, 506–519. [Google Scholar] [CrossRef]
- Kolarik, N.E.; Gaughan, A.E.; Stevens, F.R.; Pricope, N.G.; Woodward, K.; Cassidy, L.; Salerno, J.; Hartter, J. A multi-plot assessment of vegetation structure using a micro-unmanned aerial system (UAS) in a semi-arid savanna environment. ISPRS J. Photogramm. Remote Sens. 2020, 164, 84–96. [Google Scholar] [CrossRef]
- Libran-Embid, F.; Klaus, F.; Tscharntke, T.; Grass, I. Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes-a systematic review. Sci. Total Environ. 2020, 732, 139204. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.M.; Dziob, K.; Bogawski, P. Unmanned aerial vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 2018, 4, 56–74. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Wang, Z.; Yang, L.; Xie, Y.; Huang, Y. UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. J. Plant Ecol. 2021, 14, 1003–1023. [Google Scholar] [CrossRef]
- Robinson, J.M.; Harrison, P.A.; Mavoa, S.; Breed, M.F. Existing and emerging uses of drones in restoration ecology. Methods Ecol. Evol. 2022, 13, 1899–1911. [Google Scholar] [CrossRef]
- Dronova, I.; Kislik, C.; Dinh, Z.; Kelly, M. A review of unoccupied aerial vehicle use in wetland applications: Emerging opportunities in approach, technology, and data. Drones 2021, 5, 45. [Google Scholar] [CrossRef]
- Popp, M.R.; Kalwij, J.M. Consumer-grade UAV imagery facilitates semantic segmentation of species-rich savanna tree layers. Sci. Rep. 2023, 13, 13892. [Google Scholar] [CrossRef]
- Yan, G.; Li, L.; Coy, A.; Mu, X.; Chen, S.; Xie, D.; Zhang, W.; Shen, Q.; Zhou, H. Improving the estimation of fractional vegetation cover from UAV RGB imagery by colour unmixing. ISPRS J. Photogramm. Remote Sens. 2019, 158, 23–34. [Google Scholar] [CrossRef]
- Liu, G.; Drost, H.J. Atlas of the Yellow River Delta, 1st ed.; The Publishing House of Surveying and Mapping: Beijing, China, 1997; pp. 23–34. [Google Scholar]
- Cui, B.; Yang, Q.; Yang, Z.; Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103. [Google Scholar] [CrossRef]
- Fan, X.; Pedroli, B.; Liu, G.; Liu, H.; Song, C.; Shu, L. Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity. Ecohydrology 2011, 4, 744–756. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.; Ren, L.; Kong, Y.; Li, H.; Li, L. Assessment of the red-crowned crane habitat in the Yellow River Delta Nature Reserve, East China. Reg. Environ. Chang. 2013, 13, 115–123. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, R.; Song, B. Plant community succession in modern Yellow River Delta, China. Zhejiang Univ. Sci. B 2007, 8, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Yang, Q.; Zhang, K.; Zhao, X.; You, Z. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta. Plant Ecol. 2010, 209, 279–290. [Google Scholar] [CrossRef]
- Liu, J.; Rong, Q.; Zhao, Y. Variations in soil nutrients and salinity caused by tamarisk in the coastal wetland of the Laizhou Bay, China. Ecosphere 2017, 8, e01672. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Liu, J.; Lu, Z.; Xia, J.; Tian, J. Vegetation pattern in shell ridge island in China’s Yellow River Delta. Front. Earth Sci. 2015, 9, 567–577. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Sun, T.; Yang, Z.; Li, M. Habitat heterogeneity affects the efficacy of ecological restoration by freshwater releases in a recovering freshwater coastal wetland in China’s Yellow River Delta. Ecol. Eng. 2017, 104, 1–12. [Google Scholar] [CrossRef]
- Jiao, S.; Zhang, M.; Wang, Y.; Liu, J.; Li, Y. Variation of soil nutrients and particle size under different vegetation types in the Yellow River Delta. Acta Ecol. Sin. 2014, 34, 148–153. [Google Scholar] [CrossRef]
- Liu, S.; Hou, X.; Yang, M.; Cheng, F.; Coxixo, A.; Wu, X.; Zhang, Y. Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catena 2018, 165, 279–285. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C.; Li, H. Soil physicochemical properties associated with quasi-circular vegetation patches in the Yellow River Delta, China. Geoderma 2019, 227, 202–214. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C.; Li, H. Variation in soil bulk density and hydraulic conductivity within a quasi-circular vegetation patch and bare soil area. J. Soils Sediments 2020, 20, 2019–2030. [Google Scholar] [CrossRef]
- Fang, H.; Xu, J. Land cover and vegetation change in the Yellow River Delta Nature Reserve analyzed with Landsat thematic mapper data. Geocarto Int. 2000, 15, 43–50. [Google Scholar] [CrossRef]
- Ye, Q.; Liu, G.; Tian, G.; Chen, S.; Huang, C.; Chen, S.; Liu, Q.; Chang, J.; Shi, Y. Geospatial-temporal analysis of land-use changes in the Yellow River Delta during the last 40 years. Sci. China Earth Sci. 2004, 47, 1008–1024. [Google Scholar] [CrossRef]
- Ottinger, M.; Kuenzer, C.; Liu, G.; Wang, S.; Dech, S. Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Appl. Geogr. 2013, 44, 53–68. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Chen, X.; Tang, J.; Jiang, M. Wetland Mapping Using Subpixel Analysis and Decision Tree Classification in the Yellow River Delta Area. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; Volume XXXVII. Part B7. [Google Scholar]
- Huang, L.; Bai, J.; Chen, B.; Zhang, K.; Huang, C.; Liu, P. Two-decade wetland cultivation and its effects on soil properties in the Yellow River Delta, China. Ecol. Inform. 2012, 10, 49–55. [Google Scholar] [CrossRef]
- Song, C.; Liu, G. Application of remote sensing detection and GIS in analysis of vegetation pattern dynamics in the Yellow River Delta. Chin. J. Popul. Resour. Environ. 2008, 6, 62–69. [Google Scholar]
- Yang, M.; Liu, S.; Yang, Z.; Sun, T.; DeGloria, S.D.; Holt, K. Effect on soil properties of conversion of Yellow River Delta ecosystem. Wetlands 2009, 29, 1014–1022. [Google Scholar] [CrossRef]
- Chang, D.; Wang, Z.; Ning, X.; Li, Z.; Zhang, L.; Liu, X. Vegetation changes in Yellow River Delta wetlands from 2018 to 2020 using PIE-Engine and short time series Sentinel-2 images. Front. Mar. Sci. 2022, 9, 977050. [Google Scholar] [CrossRef]
- Jiang, J.; Tian, H.; Fu, P.; Meng, F.; Tong, H. Spatial and temporal changes of typical vegetation in the Yellow River Delta based on Zhuhai-1 hyperspectral data. Appl. Sci. 2023, 13, 12614. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C.; Xie, C. Using SPOT 5 fusion-ready imagery to detect Chinese tamarisk (saltcedar) with mathematical morphological method. Int. J. Digit. Earth 2014, 7, 217–228. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, C.; Zhang, L.; Bai, J.; Zhou, D. Assessing spatiotemporal characteristics of native and invasive species with multi-temporal remote sensing images in the Yellow River Delta, China. Land Degrad. Dev. 2021, 32, 1338–1352. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, C.; Li, H. Mapping plant communities within quasi-circular vegetation patches using tasseled cap brightness, greenness, and topsoil grain size index derived from GF-1 imagery. Earth Sci. Inform. 2021, 14, 975–984. [Google Scholar] [CrossRef]
- Song, C.; Huang, C.; Liu, H. Predictive vegetation mapping approach based on spectral data, DEM and generalized additive models. Chin. Geogra. Sci. 2013, 23, 331–343. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Jin, Y.; Sun, T. The impact of multiple seashore reclamation activities on vegetation cover in the Yellow River Delta, China: Implications based on structural equation modeling. J. Coast. Conserv. 2018, 22, 283–292. [Google Scholar]
- Niu, B.; Zhang, Z.; Yu, X.; Li, X.; Wang, Z.; Loaiciga, H.A.; Peng, S. Regime shift of the hydroclimate-vegetation system in the Yellow River Delta of China from 1982 through 2015. Environ. Res. Lett. 2020, 15, 24017. [Google Scholar] [CrossRef]
- Liu, J.; Engel, B.A.; Wang, Y.; Zhang, G.; Zhang, Z.; Zhang, M. Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta. Sci. Total Environ. 2020, 702, 134889. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Dong, Y.; Qiu, X.; Li, B.; Li, S.; Dong, C. Temporal and spatial analysis of vegetation cover changge in the Yellow River Delta based on Landsat and MODIS time series data. Environ. Monit. Assess. 2023, 195, 1057. [Google Scholar] [CrossRef]
- Niu, B.; Si, B.; Li, D.; Zhao, Y.; Hou, X.; Li, L.; Wang, B.; Song, B.; Zhang, M.; Li, X.; et al. Spatiotemporal variation in driving factors of vegetation dynamics in the Yellow River Delta Estuarine wetlands from 2000 to 2020. Remote Sens. 2023, 15, 4332. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Huang, C. Comparison of deep learning methods for detecting and counting sorghum heads in UAV Imagery. Remote Sens. 2022, 14, 3143. [Google Scholar] [CrossRef]
- Gujjarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Wang, S.; Wu, Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–159, (In Chinese with English Abstract). [Google Scholar]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Mardanisamani, S.; Eramian, M. Segmentation of vegetation and microplots in aerial agriculture images: A survey. Plant Phenome J. 2022, 5, e20042. [Google Scholar] [CrossRef]
- Turhal, U.C. Vegetation detection using vegetation indices algorithm supported by statistical machine learning. Environ. Monit. Assess. 2022, 194, 826. [Google Scholar] [CrossRef] [PubMed]
- Vegetation Mapping Using Multispectral UAV Images. Available online: https://www.gim-international.com/content/article/vegetation-mapping-using-multispectral-uav-images (accessed on 4 January 2024).
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, C.; Liu, G.; Yu, B. Comparison of CBERS-04, GF-1, and GF-2 satellite panchromatic images for mapping quasi-circular vegetation patches in the Yellow River Delta, China. Sensors 2018, 18, 2733. [Google Scholar] [CrossRef]
- Sanou, L.; Brama, O.; Jonas, K.; Mipro, H.; Adjima, T. Composition, diversity, and structure of woody vegetation along a disturbance gradient in the forest corridor of the Boucle du Mouhoun, Burkina Faso. Plant Ecol. Divers. 2021, 13, 305–317. [Google Scholar] [CrossRef]
- Game, M.; Carrel, J.E.; Hotrabhavandra, T. Patch dynamics of plant succession on abandoned surface coal mines: A case history approach. J. Ecol. 1982, 70, 707. [Google Scholar] [CrossRef]
- Jonckheere, A.R. A distribution-free K-sample test against ordered alternatives. Biometrika 1954, 41, 133–145. [Google Scholar] [CrossRef]
- U.S. Global Change Research Program. Available online: https://www.globalchange.gov/highlights/supporting-sustainability-and-resilience-coastal-zones (accessed on 29 July 2024).
- Zhang, X.; Nepf, H. Wave damping by flexible marsh plants influenced by current. Phys. Rev. Fluids 2021, 6, 100502. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Q.; Huang, C.; Gao, X.; Li, H.; Liu, G. Mapping quasi-circular vegetation patch dynamics in the Yellow River Delta, China, between 1994 and 2016. Ecol. Indic. 2021, 126, 107656. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, C.; Gao, X.; Li, H.; Liu, G. Size distribution of the quasi-circular vegetation patches in the Yellow River Delta, China. Ecol. Inform. 2022, 71, 101807. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, S.; Zhang, X.; Sun, P.; Wang, L. Studies on interrelation between salt vegetation and soil salinity in the Yellow River Delta. Chin. J. Plant Ecol. 1994, 18, 184–193, (In Chinese with English abstract). [Google Scholar]
- Liu, Q.; Huang, C.; Li, H. Water-salt thresholds of Suaeda Salsa, Tamarix chinensis, and Phragmites australis on the interpretation of formation mechanism of quasi-circular vegetation patches. Chin. J. Ecol. 2023, 42, 2305–2313, (In Chinese with English Abstract). [Google Scholar]
Vegetation Index | Formulation | Description |
---|---|---|
NDVI | (NIR − R)/(NIR + R) | most widely used for estimating vegetation chlorophyll content |
NDRE | (NIR − RE)/(NIR + RE) | effective for estimating chlorophyll content of non-initial vegetation |
GNDVI | (NIR − G)/(NIR + G) | more stable than NDVI in particular applications |
OSAVI | (NIR − R)/(NIR + R + 0.16) | effective for estimating chlorophyll content of initial vegetation |
LCI | (NIR − RE)/(NIR + R) | effective for estimating chlorophyll nitrogen content of leaves |
NGRDI | (G − R)/(G + R) | Effective for discriminate between green plants and soil |
VDVI | (2G − R − B)/(2G + R + B) | sensitive to shadow, probably misclassified shadow as vegetation |
CIVE | 0.441R − 0.81G + 0.385B + 18.7874 | effective for separating vegetation from background, sensitive to shadow |
ExG | 2G − R − B | effective for discriminating between vegetation and bare soil, sensitive to shadow |
ExR | 1.3R − G | eliminating the effects of background stems and branches, sensitive to shadow |
VEG | G/RaB1−a with a = 0.667 | effective for identifying vegetation as well as NDVI |
GRDI | G − R | effective for discriminating between green plants and soil |
NGBDI | (G − B)/(G + B) | effective for extracting vegetation from background |
ExB | 1.4B − G | effective for detecting the blueness |
ExGR | 3G − 2.4R − B | better than ExG for separating vegetation from soil-residue background |
TGI | G − 0.39R − 0.61B | effective for segmenting vegetation from background |
MExG | 1.262G − 0.884R − 0.311B | effective for identifying vegetation, sensitive to shadow |
GBDI + MExG | 2.262G − 0.884R − 1.311B | effective for segmenting vegetation from background |
TGSI | (R − B)/(R + B + G) | effective for identifying potential vegetation establishment area |
Parameters | Formulation | Description |
---|---|---|
/ | the total number of vegetation patches () in a given area | |
/ | the total area () of a given area | |
the patch density () equals the total number of vegetation patches (), divided by total area (), multiplied by 10,000 and 100 (to convert to 100 hectares) in a given area [12] | ||
the total area () and number () of patches of community S. salsa in a given area | ||
the total area () and number () of patches of community T. chinensis in a given area | ||
the total area () and number () of patches of community P. australis in a given area | ||
the total area () and number () of patches of community S. salsa + L. bicolor in a given area | ||
the total area () of vegetation patches and number () of community types in a given area | ||
the mean area () of vegetation patches in a given area | ||
the mean area () of patches of community S. salsa in a given area | ||
the mean area () of patches of community T. chinensis in a given area | ||
the mean area () of patches of community P. australis in a given area | ||
the mean area () of patches of community S. salsa + L. bicolor in a given area | ||
vegetation cover () of th community in a given area | ||
relative dominance () of th community in a given area [71] | ||
the proportional abundance () of th community in a given area | ||
Shannon–Wiener diversity index (), measure total community diversity in a given area | ||
evenness index (E), evenness of all communities in a given area, , is the total number of community types in a given area | ||
an ecological variable () relates to the total fluctuation for patch sizes in a given area, is the area of th vegetation patch [12] | ||
the mean shape index (), the roundness of vegetation patches in a given area, is the perimeter of th vegetation patch [72] |
Vegetation Communities | Actual Vegetation Type | |||||
---|---|---|---|---|---|---|
T. chinensis | S. salsa | S. salsa + L. bicolor | P. australis | Non-Vegetation | ||
Classified vegetation type | T. chinensis | 25 | 1 | 0 | 0 | 2 |
S. salsa | 0 | 212 | 4 | 0 | 3 | |
S. salsa + L. bicolor | 1 | 5 | 66 | 1 | 0 | |
P. australis | 0 | 0 | 0 | 31 | 0 | |
Non-vegetation | 11 | 130 | 1 | 0 | 2707 | |
Producer accuracy (%) | 67.6% | 60.9% | 93.0% | 96.9% | 99.8% | |
User accuracy (%) | 89.3% | 96.8% | 90.4% | 100.0% | 95.0% | |
Overall accuracy = 95.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, Q.; Huang, C.; Zhang, X.; Wang, S.; Wu, W.; Shi, L. Variation in Vegetation Composition and Structure across Mudflat Areas in the Yellow River Delta, China. Remote Sens. 2024, 16, 3495. https://doi.org/10.3390/rs16183495
Li H, Liu Q, Huang C, Zhang X, Wang S, Wu W, Shi L. Variation in Vegetation Composition and Structure across Mudflat Areas in the Yellow River Delta, China. Remote Sensing. 2024; 16(18):3495. https://doi.org/10.3390/rs16183495
Chicago/Turabian StyleLi, He, Qingsheng Liu, Chong Huang, Xin Zhang, Shuxuan Wang, Wei Wu, and Lei Shi. 2024. "Variation in Vegetation Composition and Structure across Mudflat Areas in the Yellow River Delta, China" Remote Sensing 16, no. 18: 3495. https://doi.org/10.3390/rs16183495
APA StyleLi, H., Liu, Q., Huang, C., Zhang, X., Wang, S., Wu, W., & Shi, L. (2024). Variation in Vegetation Composition and Structure across Mudflat Areas in the Yellow River Delta, China. Remote Sensing, 16(18), 3495. https://doi.org/10.3390/rs16183495