Vegetation Masking of Remote Sensing Data Aids Machine Learning for Soil Fertility Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Data Analysis and Model Development
2.3.1. Geospatial Data
2.3.2. Model Development and Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology; University Press: Cambridge, UK, 2005. [Google Scholar]
- Iqbal, J.; Read, J.J.; Thomasson, A.J.; Jenkins, J.N. Relationships between Soil-Landscape and Dryland Cotton Lint Yield. Soil Sci. Soc. Am. J. 2005, 69, 872–882. [Google Scholar] [CrossRef]
- Winzeler, H.E.; Owens, P.R.; Joern, B.C.; Camberato, J.J.; Lee, B.D.; Anderson, D.E.; Smith, D.R. Potassium Fertility and Terrain Attributes in a Fragiudalf Drainage Catena. Soil Sci. Soc. Am. J. 2008, 72, 1311–1320. [Google Scholar] [CrossRef]
- Mancini, M.; Winzeler, H.E.; Blackstock, J.; Owens, P.R.; Miller, D.M.; Silva, S.H.G.; Ashworth, A.J. Pixel-Based Spatiotemporal Statistics from Remotely Sensed Imagery Improves Spatial Predictions and Sampling Strategies of Alluvial Soils. Geoderma 2024, 447, 116919. [Google Scholar] [CrossRef]
- Scull, P.; Franklin, J.; Chadwick, O.A.; McArthur, D. Predictive Soil Mapping: A Review. Prog. Phys. Geogr. Earth Environ. 2003, 27, 171–197. [Google Scholar] [CrossRef]
- Mendes, W.D.S.; Demattê, J.A.M.; Silvero, N.E.Q.; Rabelo Campos, L. Integration of Multispectral and Hyperspectral Data to Map Magnetic Susceptibility and Soil Attributes at Depth: A Novel Framework. Geoderma 2021, 385, 114885. [Google Scholar] [CrossRef]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zeng, C.; Zhang, H.; Wang, S. Exploring Influence Factors in Mapping Soil Organic Carbon on Low-Relief Agricultural Lands Using Time Series of Remote Sensing Data. Soil Tillage Res. 2021, 210, 104982. [Google Scholar] [CrossRef]
- Saucier, R.T.; United States Army Engineer Waterways Experiment Station; United States Mississippi River Commission. Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1994.
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 Image Capacities to Predict Common Topsoil Properties of Temperate and Mediterranean Agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Vaudour, E.; Gholizadeh, A.; Castaldi, F.; Saberioon, M.; Borůvka, L.; Urbina-Salazar, D.; Fouad, Y.; Arrouays, D.; Richer-de-Forges, A.C.; Biney, J.; et al. Satellite Imagery to Map Topsoil Organic Carbon Content over Cultivated Areas: An Overview. Remote Sens. 2022, 14, 2917. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal Mosaicking Approaches of Sentinel-2 Images for Extending Topsoil Organic Carbon Content Mapping in Croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Dvorakova, K.; Heiden, U.; Pepers, K.; Staats, G.; Van Os, G.; Van Wesemael, B. Improving Soil Organic Carbon Predictions from a Sentinel–2 Soil Composite by Assessing Surface Conditions and Uncertainties. Geoderma 2023, 429, 116128. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A Powerful Data Mining Procedure to Retrieve Soil Spectral Reflectance from Satellite Images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; et al. Mapping Soil Organic Carbon Stock by Hyperspectral and Time-Series Multispectral Remote Sensing Images in Low-Relief Agricultural Areas. Geoderma 2021, 398, 115118. [Google Scholar] [CrossRef]
- Fordyce, S.I.; Carr, P.M.; Jones, C.; Eberly, J.O.; Sigler, W.A.; Ewing, S.; Powell, S.L. Sentinel-2-Based Predictions of Soil Depth to Inform Water and Nutrient Retention Strategies in Dryland Wheat. Agric. Water Manag. 2023, 289, 108524. [Google Scholar] [CrossRef]
- Hengl, T.; Miller, M.A.E.; Krizan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijevic, O.; Glusica, L.; Dobermann, A.; Haefele, S.M.; et al. African Soil Properties and Nutrients Mapped at 30 m Spatial Resolution Using Two-Scale Ensemble Machine Learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The Distribution of Soil Nutrients with Depth: Global Patterns and the Imprint of Plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Van Der Werff, H.; Van Der Meer, F. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef]
- Bhadra, S.K.; Bhavanarayana, M. Estimation of the Influence of Soil Moisture on Soil Colour. Z. Für Pflanzenernährung Und Bodenkd. 1997, 160, 401–405. [Google Scholar] [CrossRef]
- Xu, X.; Zhai, X. Mapping Soil Organic Matter Content during the Bare Soil Period by Using Satellite Data and an Improved Deep Learning Network. Sustainability 2022, 15, 323. [Google Scholar] [CrossRef]
- Morris, W.M.; Eason, W.P. Soil Survey, Washington County, Mississippi; U.S. Government Printing Office: Washington, DC, USA, 1961.
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Jones, J.M.B., Jr.; Workman, S.M. Optical Emission Spectrometry. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1983; pp. 29–65. ISBN 978-0-89118-977-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Hijmans, R.J. Terra: Spatial Data Analysis. 2023. Available online: https://CRAN.R-project.org/package=terra (accessed on 14 June 2024).
- Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pebesma, E.J.; Bivand, R. Classes and Methods for Spatial Data in R. R News 2005, 5, 9–13. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Roudier, P. Clhs: A R Package for Conditioned Latin Hypercube Sampling. 2011. Available online: https://cran.r-project.org/web/packages/clhs/index.html (accessed on 14 June 2024).
- Kremer, L.P.M. Ggpointdensity: A Cross between a 2D Density Plot and a Scatter Plot; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Ranghetti, L.; Boschetti, M.; Nutini, F.; Busetto, L. “Sen2r”: An R Toolbox for Automatically Downloading and Preprocessing Sentinel-2 Satellite Data. Comput. Geosci. 2020, 139, 104473. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- U.S. Geological Survey. 20221121, USGS 1 Meter 15 x69y371 MS_Central_Delta_2018_D18. 2022. Available online: https://www.sciencebase.gov/catalog/item/6392d084d34e0de3a1efd555 (accessed on 14 June 2024).
- Quantum Spatial MS_MississippiDelta_2018_D18 Lidar Processing Report. 2020. Available online: https://maris.mississippi.edu/MARISdata/Elevation/LIDAR/MS_Delta_2019to20/UTM_15/metadata/reports/Final_MS_Delta_ProcessingReport_UTM15.pdf (accessed on 14 June 2024).
- U.S. Geological Survey. 3D Elevation Program 1-Meter Resolution Digital Elevation Model (Published 20200606); 2002. Available online: https://www.usgs.gov/3d-elevation-program (accessed on 14 June 2024).
- European Space Agency. Sentinel-2 Mission Guide2024. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (accessed on 14 June 2024).
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems; Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (accessed on 14 June 2024).
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
Soil Fertility Attributes | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|
pH | 6.97 | 0.37 | 5.66 | 6.76 | 7.01 | 7.22 | 8.07 |
----------------------- ppm ----------------------- | |||||||
P | 43.6 | 24.3 | 5.0 | 29 | 37 | 52 | 240 |
K | 222 | 75.4 | 86 | 156 | 209 | 287 | 421 |
Mg | 613 | 414 | 162 | 284 | 392 | 1039 | 1609 |
Ca | 2821 | 1711 | 758 | 1440 | 2031 | 4758 | 6849 |
S | 119 | 47.4 | 60 | 81 | 95 | 171 | 222 |
Zn | 3.25 | 2.04 | 0.80 | 1.80 | 2.80 | 4.20 | 26.4 |
Masked Imagery | |||||||
---|---|---|---|---|---|---|---|
Site Image | Mean | Std | Min | 25% | 50% | 75% | Max |
Median B2 | 884 | 147 | 527 | 771 | 876 | 991 | 1445 |
Median B3 | 1207 | 217 | 738 | 1024 | 1216 | 1370 | 1844 |
Median B4 | 1476 | 232 | 900 | 1299 | 1484 | 1650 | 2188 |
Median B5 | 1857 | 321 | 1245 | 1578 | 1909 | 2098 | 2773 |
Median B6 | 2212 | 475 | 1303 | 1805 | 2213 | 2544 | 3541 |
Median B7 | 2416 | 510 | 1398 | 1974 | 2426 | 2781 | 3839 |
Median B8 | 2539 | 529 | 1495 | 2064 | 2562 | 2891 | 3912 |
Median B11 | 3499 | 515 | 2349 | 2930 | 3667 | 3895 | 4512 |
Median B12 | 2700 | 475 | 1779 | 2253 | 2755 | 3086 | 3946 |
IQR B2 | 461 | 157 | 189 | 353 | 437 | 520 | 1046 |
IQR B3 | 575 | 208 | 213 | 417 | 573 | 667 | 1343 |
IQR B4 | 741 | 247 | 194 | 560 | 724 | 867 | 1566 |
IQR B5 | 769 | 277 | 173 | 539 | 770 | 935 | 1716 |
IQR B6 | 921 | 400 | 268 | 592 | 837 | 1153 | 2185 |
IQR B7 | 976 | 415 | 301 | 648 | 872 | 1243 | 2485 |
IQR B8 | 976 | 383 | 242 | 653 | 918 | 1235 | 2297 |
IQR B11 | 1080 | 347 | 360 | 797 | 1067 | 1310 | 2158 |
IQR B12 | 1171 | 475 | 267 | 721 | 1181 | 1455 | 2765 |
Not-masked imagery | |||||||
Site Image | Mean | Std | Min | 25% | 50% | 75% | Max |
Median B2 | 569 | 96 | 364 | 502 | 565 | 620 | 986 |
Median B3 | 844 | 120 | 607 | 752 | 831 | 919 | 1398 |
Median B4 | 854 | 187 | 393 | 750 | 852 | 955 | 1594 |
Median B5 | 1368 | 190 | 994 | 1225 | 1347 | 1512 | 2300 |
Median B6 | 2731 | 475 | 1517 | 2387 | 2793 | 3054 | 3858 |
Median B7 | 3166 | 610 | 1681 | 2674 | 3260 | 3625 | 4528 |
Median B8 | 3257 | 621 | 1743 | 2736 | 3396 | 3731 | 4564 |
Median B11 | 2800 | 254 | 2248 | 2589 | 2795 | 2993 | 3854 |
Median B12 | 1799 | 275 | 1239 | 1590 | 1782 | 1985 | 3123 |
IQR B2 | 491 | 125 | 208 | 390 | 483 | 586 | 1096 |
IQR B3 | 553 | 165 | 224 | 417 | 543 | 672 | 1248 |
IQR B4 | 975 | 232 | 342 | 794 | 977 | 1147 | 1736 |
IQR B5 | 800 | 255 | 289 | 592 | 776 | 968 | 1541 |
IQR B6 | 1287 | 326 | 407 | 1049 | 1292 | 1502 | 2249 |
IQR B7 | 1865 | 486 | 726 | 1542 | 1804 | 2126 | 3491 |
IQR B8 | 1796 | 446 | 612 | 1510 | 1740 | 2021 | 3315 |
IQR B11 | 1165 | 374 | 314 | 813 | 1195 | 1429 | 2130 |
IQR B12 | 1405 | 411 | 467 | 1072 | 1409 | 1703 | 2738 |
| ||||||||
Training dataset (n = 1716) | Test dataset (n = 429) | |||||||
Fertility attribute | R2 | R2 std | RMSE | RMSE std | MAE | R2 | RMSE | MAE |
pH | 0.34 | 0.08 | 0.30 | 0.02 | 0.04 | −0.65 | 0.31 | 0.23 |
P | 0.28 | 0.09 | 20.3 | 2.95 | 5.26 | −1.05 | 20.1 | 13.2 |
K | 0.70 | 0.05 | 40.8 | 3.9 | 3.58 | 0.62 | 40.1 | 29.6 |
Mg | 0.95 | 0.01 | 95.4 | 10.26 | 0.57 | 0.95 | 86.5 | 59.1 |
Ca | 0.93 | 0.01 | 445 | 40.62 | 67.15 | 0.94 | 404 | 303 |
S | 0.95 | 0.01 | 10.4 | 0.89 | 0.89 | 0.95 | 9.71 | 7.35 |
Zn | 0.35 | 0.09 | 1.66 | 0.33 | 0.57 | −0.48 | 1.41 | 0.77 |
| ||||||||
Training dataset (n = 1716) | Test dataset (n = 429) | |||||||
Fertility attribute | R2 | R2 std | RMSE | RMSE std | MAE | R2 | RMSE | MAE |
pH | 0.39 | 0.07 | 0.29 | 0.02 | 0.07 | −0.28 | 0.29 | 0.21 |
P | 0.34 | 0.10 | 19.3 | 3.18 | 5.14 | −0.47 | 20.1 | 13.1 |
K | 0.74 | 0.04 | 38.3 | 2.94 | 11.7 | 0.65 | 37.9 | 28.4 |
Mg | 0.95 | 0.01 | 94.9 | 9.48 | 6.50 | 0.96 | 81.1 | 58.8 |
Ca | 0.93 | 0.01 | 438 | 25.3 | 63.0 | 0.94 | 381 | 293 |
S | 0.96 | 0.01 | 10.0 | 0.63 | 1.53 | 0.95 | 10.1 | 7.38 |
Zn | 0.38 | 0.12 | 1.62 | 0.35 | 0.47 | −0.20 | 1.41 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winzeler, H.E.; Mancini, M.; Blackstock, J.M.; Libohova, Z.; Owens, P.R.; Ashworth, A.J.; Miller, D.M.; Silva, S.H.G. Vegetation Masking of Remote Sensing Data Aids Machine Learning for Soil Fertility Prediction. Remote Sens. 2024, 16, 3297. https://doi.org/10.3390/rs16173297
Winzeler HE, Mancini M, Blackstock JM, Libohova Z, Owens PR, Ashworth AJ, Miller DM, Silva SHG. Vegetation Masking of Remote Sensing Data Aids Machine Learning for Soil Fertility Prediction. Remote Sensing. 2024; 16(17):3297. https://doi.org/10.3390/rs16173297
Chicago/Turabian StyleWinzeler, Hans Edwin, Marcelo Mancini, Joshua M. Blackstock, Zamir Libohova, Phillip R. Owens, Amanda J. Ashworth, David M. Miller, and Sérgio H. G. Silva. 2024. "Vegetation Masking of Remote Sensing Data Aids Machine Learning for Soil Fertility Prediction" Remote Sensing 16, no. 17: 3297. https://doi.org/10.3390/rs16173297
APA StyleWinzeler, H. E., Mancini, M., Blackstock, J. M., Libohova, Z., Owens, P. R., Ashworth, A. J., Miller, D. M., & Silva, S. H. G. (2024). Vegetation Masking of Remote Sensing Data Aids Machine Learning for Soil Fertility Prediction. Remote Sensing, 16(17), 3297. https://doi.org/10.3390/rs16173297