Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Setup
2.2. Data Collection
2.2.1. Imagery via UAS Flights
2.2.2. Grain Yield
2.2.3. Plant Disease Incidence
2.3. Data Processing
2.3.1. UAS Collected Imagery and Plant Reflectance
2.3.2. Vegetation Indices
2.4. Statistical Analysis and Machine Learning Models
2.4.1. Model Formation and Performance
2.4.2. Model Performance Optimization (Using Multispectrally Derived Data)
2.4.3. Modeling with Additional Available Data
2.4.4. Shapely Additive Explanations Analysis
3. Results
3.1. Disease Incidence and Corn Yield
3.2. Feature Correlation
3.3. Analysis of Variance
3.4. Regression Modeling of Disease Incidence
3.5. Classification Modeling of SCMV Inoculation Status (Mock- vs. SCMV-Inoculated)
3.6. XGBoost Regression Model for Disease Incidence
3.7. Support Vector Machine Classification Model for SMCV Inoculation Status
3.8. Model Performance with Additional Features for Disease Incidence Prediction
3.9. Important Indices: SCCCI and SI
4. Discussion
4.1. Regression and Classification Modeling
4.2. Selection of Sensors
4.3. Model Performance throughout the Season
4.4. Spectral Features and Model Behavior
4.4.1. Spectral Bands
4.4.2. Vegetation Indices and Feature Importance
4.5. Limitations and Steps Forward
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Lara, S.; Serna-Saldivar, S.O. Corn History and Culture (Third Edition). Corn Chem. Technol. Third Ed. 2019, 1–18. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Zambrano, J.L.; Stewart, L.R.; Paul, P.A. Maize Dwarf Mosaic of Maize. Ohio State University Extension. 2016. Available online: https://ohioline.osu.edu/factsheet/plpath-cer-09 (accessed on 5 May 2023).
- Shukla, D.D.; Tosic, M.; Jilka, J.; Ford, R.E.; Toler, R.W.; Langham, M.A.C. Taxonomy of potyviruses infecting maize, sorghum and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology 1989, 79, 223–229. [Google Scholar] [CrossRef]
- Tosic, M.; Ford, R.E.; Shukla, D.D.; Jilka, J. Differentiation of Sugarcane, Maize dwarf, Johnsongrass, and Sorghum mosaic viruses based on reactions of oat and some sorghum cultivars. Plant Dis. 1990, 74, 549–552. [Google Scholar] [CrossRef]
- Frenkel, M.J.; Jilka, J.M.; McKern, N.M.; Strike, P.M.; Clark, J.M., Jr.; Shukla, D.D.; Ward, C.W. Unexpected sequence diversity in the amino-terminal ends of the coat proteins of strains of sugarcane mosaic virus. J. Gen. Virol. 1991, 72, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Cui, X.-W.; Li, X.-D.; Zhang, C.-Q.; Miao, H.-Q. Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of Sugarcane mosaic virus. Virus Genes 2011, 43, 390–397. [Google Scholar] [CrossRef]
- Viswanathan, R.; Karuppaiah, R.; Balamuralikrishnan, M. Identification of new variants of SCMV causing sugarcane mosaic in India and assessing their genetic diversity in relation to SCMV type strains. Virus Genes 2009, 39, 375–386. [Google Scholar] [CrossRef]
- Niblett, C.; Claflin, L. Corn lethal necrosis—A new virus disease of corn in Kansas. Plant Dis. Bull. 1978, 62, 15. [Google Scholar]
- Stewart, L.R.; Willie, K.; Wijeratne, S.; Redinbaugh, M.G.; Massawe, D.; Niblett, C.L.; Kiggundu, A.; Asiimwe, T. Johnsongrass mosaic virus contributes to maize lethal necrosis in East Africa. Plant Dis. 2017, 101, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Redinbaugh, M.G.; Stewart, L.R. Maize lethal necrosis: An emerging, synergistic viral disease. Annu. Rev. Virol. 2018, 5, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Ohlson, E.W.; Redinbaugh, M.G.; Jones, M.W. Mapping maize chlorotic mottle virus tolerance loci in the Maize 282 Association Panel. Crop Sci. 2022, 62, 1497–1510. [Google Scholar] [CrossRef]
- Wu, L.; Zu, X.; Wang, S.; Chen, Y. Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot. 2012, 42, 74–78. [Google Scholar] [CrossRef]
- Xu, D.L.; Park, J.W.; Mirkov, T.E.; Zhou, G.H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch. Virol. 2008, 153, 1031–1039. [Google Scholar] [CrossRef]
- Fuchs, E.; Grüntzig, M. Influence of sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) on the growth and yield of two maize varieties. J. Plant Dis. Prot. 1995, 102, 44–50. Available online: http://www.jstor.org/stable/43386365 (accessed on 1 May 2023).
- Janson, B.F.; Williams, L.E.; Findley, W.R.; Dollinger, E.J.; Ellett, C.W. Maize dwarf mosaic: New corn virus disease in Ohio. 1965. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19641101624 (accessed on 21 April 2023).
- Gustafson, T.J.; de Leon, N.; Kaeppler, S.M.; Tracy, W.F. Genetic analysis of sugarcane mosaic virus resistance in the wisconsin diversity panel of maize. Crop Sci. 2018, 58, 1853–1865. [Google Scholar] [CrossRef]
- Meyer, M.D.; Pataky, J.K. Increased severity of foliar diseases of sweet corn infected with maize dwarf mosaic and sugarcane mosaic viruses. Plant Dis. 2010, 94, 1093–1099. [Google Scholar] [CrossRef]
- Jones, M.W.; Ohlson, E.W. Susceptibility and yield response of commercial corn hybrids to maize dwarf mosaic disease. Plant Dis. 2024, 108, 1786–1792. [Google Scholar] [CrossRef]
- Kerns, M.R.; Pataky, J.K. Reactions of Sweet Corn Hybrids with Resistance to Maize Dwarf Mosaic. Plant Dis. 1997, 81, 460–464. [Google Scholar] [CrossRef]
- Shahi, T.B.; Xu, C.-Y.; Neupane, A.; Guo, W. Recent advances in crop disease detection using UAV and deep learning techniques. Remote Sens. 2023, 15, 2450. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. Available online: https://www.sciencedirect.com/science/article/pii/S016816991930290X (accessed on 2 May 2023). [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Khanal, S.; KC, K.; Fulton, J.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture (Challenges and Opportunities). Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Chakravarthy, A.K. Innovative Pest Management Approaches for the 21st Century: Harnessing Automated Unmanned Technologies; Springer Nature: New York, NY, USA, 2020; pp. 255–272. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 2719. [Google Scholar] [CrossRef]
- Antolínez García, A.; Cáceres Campana, J.W. Identification of pathogens in corn using near-infrared UAV imagery and deep learning. Precis. Agric. 2023, 24, 783–806. [Google Scholar] [CrossRef]
- Butcher, G. Tour of the Electromagnetic Spectrum; Government Printing Office: Washington, DC, USA, 2016. [Google Scholar]
- Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef]
- Moriya, E.A.S.; Imai, N.N.; Tommaselli, A.M.G.; Miyoshi, G.T. Mapping Mosaic Virus in Sugarcane Based on Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 740–748. [Google Scholar] [CrossRef]
- Viswanathan, R.; Rao, G.P. Disease Scenario and Management of Major Sugarcane Diseases in India. Sugar Tech 2011, 13, 336–353. [Google Scholar] [CrossRef]
- Gazala, I.F.S.; Sahoo, R.N.; Pandey, R.; Mandal, B.; Gupta, V.K.; Singh, R.; Sinha, P. Spectral reflectance pattern in soybean for assessing yellow mosaic disease. Indian J. Virol. 2013, 24, 242–249. [Google Scholar] [CrossRef]
- Mirik, M.; Jones, D.C.; Price, J.A.; Workneh, F.; Ansley, R.J.; Rush, C.M. Satellite remote sensing of wheat infected by Wheat streak mosaic virus. Plant Dis. 2011, 95, 4–12. [Google Scholar] [CrossRef]
- Prabhakar, M.; Prasad, Y.G.; Desai, S.; Thirupathi, M.; Gopika, K.; Rao, G.R.; Venkateswarlu, B. Hyperspectral remote sensing of yellow mosaic severity and associated pigment losses in Vigna mungo using multinomial logistic regression models. Crop Prot. 2013, 45, 132–140. [Google Scholar] [CrossRef]
- Luo, L.; Chang, Q.; Wang, Q.; Huang, Y. Identification and severity monitoring of maize dwarf mosaic virus infection based on hyperspectral measurements. Remote Sens. 2021, 13, 4560. [Google Scholar] [CrossRef]
- Ausmus, B.S.; Hilty, J.W. Reflectance studies of healthy, maize dwarf mosaic virus-infected, and Helminthosporium maydis-infected corn leaves. Remote Sens. Environ. 1971, 2, 77–81. [Google Scholar] [CrossRef]
- Dhau, I.; Adam, E.; Ayisi, K.K.; Mutanga, O. Detection and mapping of maize streak virus using RapidEye satellite imagery. Geocarto Int. 2019, 34, 856–866. [Google Scholar] [CrossRef]
- Dhau, I.; Dube, T.; Mushore, T.D. Examining the prospects of sentinel-2 multispectral data in detecting and mapping maize streak virus severity in smallholder Ofcolaco farms, South Africa. Geocarto Int. 2021, 36, 1873–1883. [Google Scholar] [CrossRef]
- Dhau, I.; Adam, E.; Mutanga, O.; Ayisi, K.K. Detecting the severity of maize streak virus infestations in maize crop using in situ hyperspectral data. Trans. R. Soc. S. Africa 2018, 73, 8–15. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, K.; Wu, S.; Tang, Z.; Zhao, Y.; Sun, Y.; Shi, Z. A Weakly Supervised Approach for Disease Segmentation of Maize Northern Leaf Blight from UAV Images. Drones 2023, 7, 173. [Google Scholar] [CrossRef]
- Garg, K.; Bhugra, S.; Lall, B. Automatic quantification of plant disease from field image data using deep learning. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, Waikoloa, HI, USA, 3–8 January 2021; pp. 1964–1971. [Google Scholar] [CrossRef]
- Wu, H.; Wiesner-Hanks, T.; Stewart, E.L.; DeChant, C.; Kaczmar, N.; Gore, M.A.; Nelson, R.J.; Lipson, H. Autonomous Detection of Plant Disease Symptoms Directly from Aerial Imagery. Plant Phenome J. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Dhau, I.; Adam, E.; Mutanga, O.; Ayisi, K.; Abdel-Rahman, E.M.; Odindi, J.; Masocha, M. Testing the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize crop. Geocarto Int. 2018, 33, 1223–1236. [Google Scholar] [CrossRef]
- Loladze, A.; Rodrigues, F.A.; Toledo, F.; Vicente, F.S.; Gérard, B.; Boddupalli, M.P. Application of remote sensing for phenotyping tar spot complex resistance in maize. Front. Plant Sci. 2019, 10, 552. [Google Scholar] [CrossRef]
- Pix4D, Version 4.2.27; Pix4D Mapper Photogrammetry Software: Lausanne, Switzerland.
- ESRI. ArcGIS Pro; Environmental Systems Research Institute: Redlands, CA, USA, 2023. [Google Scholar]
- R Core Team RF for SC. R: A Language and Environment; R Core Team: Vienna, Austria, 2019; Available online: https://www.r-project.org/ (accessed on 3 May 2023).
- Parker, T.A.; Palkovic, A.; Gepts, P. Determining the genetic control of common bean early-growth rate using unmanned aerial vehicles. Remote Sens. 2020, 12, 1748. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. Available online: https://elibrary.asabe.org/azdez.asp?JID=&AID=27838&CID=t1995&v=38&i=1&T=1 (accessed on 3 May 2023). [CrossRef]
- Girardeau-Montaut, D. CloudCompare; EDF R&D Telecom ParisTech: Paris, France, 2016; Available online: https://www.danielgm.net/cc/ (accessed on 4 January 2023).
- Ray, S.S.; Singh, J.P.; Das, G.; Panigrahy, S.; Group, A.R.; Centre, S.A.; Potato, C. Use of high resolution remote sensing data for generating site-specific soil mangement plan. Red 2004, 550, 727. [Google Scholar]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 4–7. [Google Scholar] [CrossRef]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the Canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 103–112. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 82, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Sp. Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Junior, C.K.; Guimarães, A.M.; Caires, E.F. Use of active canopy sensors to discriminate wheat response to nitrogen fertilization under no-tillage. Eng. Agric. 2016, 36, 886. [Google Scholar] [CrossRef]
- Portz, G.; Molin, J.P.; Jasper, J. Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precis. Agric. 2012, 13, 33–44. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Spangenberg, G.; Kant, S. Fusion of spectral and structural information from aerial images for improved biomass estimation. Remote Sens. 2020, 12, 3164. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Walker, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 19 July 2000; Volume 1619. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFCT Type III Final Report, 371; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Schlerf, M.; Mathieu, R.; Heitkönig, I.M.A. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne rapideye sensor. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 151–162. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1998, 25, 295–309. [Google Scholar] [CrossRef]
- Raper, T.B.; Varco, J.J. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precis. Agric. 2015, 16, 62–76. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Revelle, W.; Revelle, M.W. Package ‘psych’. Compr. R Arch. Netw. 2015, 337, 161–165. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 93–100. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/wics.14 (accessed on 3 May 2023). [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. Available online: https://link.springer.com/article/10.1023/A:1010933404324 (accessed on 3 May 2023). [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ballabio, C.; Sterlacchini, S. Support vector machines for landslide susceptibility mapping: The Staffora River Basin case study, Italy. Math. Geosci. 2012, 44, 47–70. [Google Scholar] [CrossRef]
- Triscowati, D.W.; Sartono, B.; Kurnia, A.; Domiri, D.D.; Wijayanto, A.W. Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest. In Proceedings of the Sixth Geoinformation Science Symposium, Yogyakarta, Indonesia, 26–27 August 2019; Volume 11311, p. 1131102. [Google Scholar]
- Fan, J.; Zhou, J.; Wang, B.; de Leon, N.; Kaeppler, S.M.; Lima, D.C.; Zhang, Z. Estimation of Maize Yield and Flowering Time Using Multi-Temporal UAV-Based Hyperspectral Data. Remote Sens. 2022, 14, 3052. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. Available online: https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634 (accessed on 3 May 2023). [CrossRef]
- Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 67–80. Available online: https://link.springer.com/chapter/10.1007/978-1-4302-5990-9_4 (accessed on 3 May 2023).
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. Available online: https://link.springer.com/article/10.1023/B:STCO.0000035301.49549.88 (accessed on 3 May 2023). [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapoik, V. Support Vector Regression Machines. Adv. Neural Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Springer: New York, NY, USA, 2012; pp. 157–175. Available online: https://link.springer.com/chapter/10.1007/978-1-4419-9326-7_5 (accessed on 3 May 2023).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: A Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 2015, 8, 014008. Available online: https://iopscience.iop.org/article/10.1088/1749-4699/8/1/014008 (accessed on 3 May 2023). [CrossRef]
- Cerilani, M. Shap-Hypetune. 2022. Available online: https://github.com/cerlymarco/shap-hypetune (accessed on 12 February 2023).
- Cipriano, W. Pretty Print Confusion Matrix. 2018. Available online: https://github.com/wcipriano/pretty-print-confusion-matrix (accessed on 20 March 2023).
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4766–4775. [Google Scholar]
- Wei, H.E.; Grafton, M.; Bretherton, M.; Irwin, M.; Sandoval, E. Evaluation of the Use of UAV-Derived Vegetation Indices and Environmental Variables for Grapevine Water Status Monitoring Based on Machine Learning Algorithms and SHAP Analysis. Remote Sens. 2022, 14, 5918. [Google Scholar] [CrossRef]
- Lu, G.; Wang, Z.; Xu, F.; Pan, Y.-B.; Grisham, M.P.; Xu, L. Sugarcane mosaic disease: Characteristics, identification and control. Microorganisms 2021, 9, 1984. [Google Scholar] [CrossRef]
- Chang, J.; Clay, D.E.; Clay, S.A.; Reese, C. Using Field Scouting or Remote Sensing Technique to Assess Soybean Yield Limiting Factors Organic weed management View project Practical Agronomy and Mathematics for Precision Farming View project SEE PROFILE. 2013. Chapter 29. pp. 1–7. Available online: https://openprairie.sdstate.edu/cgi/viewcontent.cgi?filename=15&article=1001&context=plant_book&type=additional (accessed on 23 March 2023).
- Slaton, M.R.; Hunt, E.R.; Smith, W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 2001, 88, 278–284. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Kim, M.S.; Daughtry CS, T.; Chappelle, E.W.; McMurtrey, J.E.; Walthall, C.L. The Use of the High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation. In Proceedings of the ISPRS’94, Val d’Isere, France; 1994; pp. 299–306. [Google Scholar]
- Dawson, T.P.; Curran, P.J. A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Sall, M.A.M.; Ghiyamat, A. Hyperspectral Remote Sensing of Vegetation Using Red Edge Position Techniques. Am. J. Appl. Sci. 2006, 3, 1864–1871. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. F. Crop. Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K.; Howard, D.M.; Phuyal, K.P.; Ji, L. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 2013, 30, 1–6. Available online: https://www.sciencedirect.com/science/article/pii/S1470160X13000757 (accessed on 27 March 2023). [CrossRef]
- Pu, R.; Gong, P.; Biging, G.S.; Larrieu, M.R. Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index. IEEE Trans. Geosci. Remote Sens. 2003, 41, 916–921. [Google Scholar] [CrossRef]
- Sumner, Z.; Varco, J.J.; Dhillon, J.S.; Fox, A.A.A.; Czarnecki, J.; Henry, W.B. Ground versus aerial canopy reflectance of corn: Red-edge and non-red edge vegetation indices. Agron. J. 2021, 113, 2782–2797. [Google Scholar] [CrossRef]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize. Precis. Agric. 2011, 12, 892–904. [Google Scholar] [CrossRef]
- Sanger, J. Quantitative investigations of leaf pigments from their inception in buds through autumn coloration to decomposition in falling leaves. Ecology 1971, 52, 1075–1089. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Strzałka, K.; Kostecka-Gugała, A.; Latowski, D. Carotenoids and Environmental Stress in Plants: Significance of Carotenoid-Mediated Modulation of Membrane Physical Properties. Russ. J. Plant Physiol. 2003, 50, 168–173. [Google Scholar] [CrossRef]
Dates 1,2 | Snyder Field | Schaffter Field |
---|---|---|
14 July 2021 | Multispectral, Thermal IR | NA |
28 July 2021 | Multispectral | NA |
28 July 2022 | Multispectral, Thermal IR 3, LiDAR | Multispectral, LiDAR |
1 September 2022 | Multispectral, Thermal IR 3 | Multispectral |
Vegetation Index (VI) | Equation | Reference |
---|---|---|
Brightness Index (BI) | (((R2) + (G2) + (B2))/3)0.5 | [54] |
Coloration Index (CI) | (R − G)/(R + G) | [54] |
Chlorophyll Index Green (CIG) | (NIR/G) − 1 | [55] |
Chlorophyll Index Red-Edge (CIRE) | (NIR/Rdg) − 1 | [55] |
Chlorophyll Vegetation Index (CVI) | NIR−(R/(G2)) | [56] |
Enhanced Vegetation Index (EVI) | (2.5 × (NIR−R))/((NIR + 6 × R−7.5 × B) + 1) | [57] |
Green Atmospherically Resistant Vegetation Index (GARVI) | (NIR − (G − (B − R)))/(NIR + (G − (B − R))) | [58] |
Green Normalized Vegetation Index (GNDVI) | (NIR − G)/(NIR + G) | [59] |
Green Wide Dynamic Vegetation Index (α = 0.1; gWDRVI 1) | ((0.1 × NIR − R)/(0.1 × NIR + R)) + ((1 − 0.1)/(1 + 0.1)) | [60] |
Green Wide Dynamic Vegetation Index (α = 0.2, gWDRVI 2) | ((0.2 × NIR−R)/(0.2 × NIR + R)) + ((1 − 0.2)/(1 + 0.2)) | [60] |
Hue Index (HI) | (2 × R − G − B)/(G − B) | [54] |
Inverse Ratio Index (IRVI) | R/NIR | [61] |
Neparian Logarithm of the Red-Edge (lnRE) | 100 × (lnNIR − lnR) | [62] |
Modified Chlorophyll Absorption Ratio Index 1 (MCARI 1) | 1.2 × (2.5 × (NIR − G) − 1.3 × (R − G)) | [63,64] |
MCARI 2 | (3.75 × (NIR − R) − 1.95 × (NIR − G))/((((2 × NIR + 1)2) − (6 × NIR − 5 × sqrtI) − 0.5)) | [63,64] |
Modified Chlorophyll Absorption Index/Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI) | (((Rdg − R) − 0.2 × (Rdg − G)) × (Rdg/R))/(1.16 × ((NIR − R)/(NIR + R + 0.16))) | [65] |
Modified Soil-Adjusted Vegetation Index (MSAVI) | (2 × NIR + 1 − sqrt(((2 × NIR + 1)2) − 8 × (NIR − R)))/2 | [66] |
Modified Simple Ratio (MSR) | ((NIR/R) − 1)/(((NIR/R) + 1)0.5)) | [67] |
Modified Triangular Vegetation Index 1 (MTVI 1) | (1.2 × (1.2 × (NIR − G) − 2.5 × (R − G))) | [64] |
MTVI Index 2 | (1.8 × (NIR − G) − 3.75 × (R − G))/(sqrt(((2 × NIR + 1)2) − (6 × NIR − 5 × sI(R)) − 0.5)) | [64] |
Normalized Difference Red-Edge (NDRE) | (NIR − Rdg)/(NIR + Rdg) | [68] |
Normalized Difference Vegetation Index (NDVI) | (NIR − R)/(NIR + R) | [69] |
Normalized Green/REd Difference Index (NGRDI) | (G − R)/(G + R) | [70] |
Ratio between NIR and Green bands (NIR/G) | NIR/G | [59] |
Ratio between NIR and Red bands or Ratio Vegetation Index (NIR/R) (or RVI) | NIR/R | [71] |
Ratio between NIR and Red-Edge bands (NIR/R-Edge) | NIR/Rdg | [71] |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | (1 + 0.16) × (NIR − R)/(NIR + R + 0.16) | [65] |
Renormalized Difference Vegetation Index (RDVI) (broadband) | (NIR − R)/((NIR + R)0.5) | [72] |
Redness Index (RI) | (R2)/(B × (G3)) | [54] |
Soil-Adjusted Vegetation Index (L = 0.5, intermediate vegetation; SAVI) | 1.5 × ((NIR − R)/(NIR + R + 0.5)) | [73] |
Simplified Canopy Chlorophyll Content Index (SCCCI) | NDRE/NDVI or | [68,74] |
Saturation Index or Normalized Pigment Chlorophyll Index (SI or NPCI) | (R − B)/(R + B) | [54,75] |
Transformed Chlorophyll Absorption Reflectance Index (TCARI) (broadband) | (3 × ((Rdg − R) − 0.2 × (Rdg − G)) × (Rdg/R)) | [76] |
TCARI/Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI) | (3 × ((Rdg − R) − 0.2 × (Rdg − G)) × (Rdg/R))/(1.16 × ((NIR − R)/(NIR + R + 0.16))) | [76] |
Wide Dynamic Vegetation Index 1 (α = 0.1; WDRVI 1) | (0.1 × NIR − R)/(0.1 × NIR + R) | [60] |
WDRVI Index 2 (α = 0.2; WDRVI 2) | (0.2 × NIR − R)/(0.2 × NIR + R) | [60] |
2021 | Snyder Farm | 2022 | Snyder Farm | Schaffter Farm |
---|---|---|---|---|
14 July 2021 | SCCCI = −0.40 | 28 July 2022 | Not Significant | NGRDI = 0.61 |
TCARI/OSAVI = 0.3 | ||||
MACARI/OSAVI = 0.3 | CI = −0.61 | |||
CVI = 0.26 | HI = −0.60 | |||
28 July 2021 | SCCCI = −0.31 | 1 September 2022 | NIR = −0.63 | MCARI2 = 0.56 |
NDRE = −0.24 | ||||
CIRE = −0.24 | MCARI1 = −0.61 | NIR/Red = 0.56 | ||
NIR/Red = −0.24 | MTVI1 = −0.56 | MSR = 0.56 |
Models | 2021 | 2022 | 2021 and 2022 Combined | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Ridge Regression | 0.30 | 28.78 | 0.02 | 39.50 | 0.21 | 30.99 |
Support Vector Regression | 0.39 | 26.52 | −0.06 | 39.34 | 0.25 | 30.43 |
Random Forest | 0.40 | 26.23 | −0.11 | 40.28 | 0.29 | 29.35 |
XGBoost | 0.40 | 26.32 | −0.07 | 39.66 | 0.29 | 29.26 |
Dates | R2 | RMSE |
---|---|---|
28 June 2021 | 0.03 | 33.98 |
14 July 2021 | 0.35 | 28.14 |
28 July 2021 | 0.43 | 26.19 |
30 June 2022 | −0.32 | 41.94 |
28 July 2022 | −0.20 | 38.85 |
1 September 2022 | −0.10 | 37.16 |
Models | 2021 | 2022 | 2021 & 2022 |
---|---|---|---|
Support Vector Machine | 0.759 | 0.361 | 0.729 |
Random Forest | 0.742 | 0.472 | 0.708 |
XGBoost | 0.756 | 0.417 | 0.705 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevers, N.; Ohlson, E.W.; KC, K.; Jones, M.W.; Khanal, S. Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral Imagery. Remote Sens. 2024, 16, 3296. https://doi.org/10.3390/rs16173296
Bevers N, Ohlson EW, KC K, Jones MW, Khanal S. Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral Imagery. Remote Sensing. 2024; 16(17):3296. https://doi.org/10.3390/rs16173296
Chicago/Turabian StyleBevers, Noah, Erik W. Ohlson, Kushal KC, Mark W. Jones, and Sami Khanal. 2024. "Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral Imagery" Remote Sensing 16, no. 17: 3296. https://doi.org/10.3390/rs16173296