Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery
Abstract
:1. Introduction
2. Methods
2.1. Architecture of the Algorithm
2.2. Structural Similarity Algorithm Approach
2.2.1. Effect of Shadows
2.2.2. Effect of Illuminance
2.3. Image Filters
2.4. Calculation of Collapsed Volumes
2.4.1. The 3D Surface Reconstruction and Disparity Calculation
2.4.2. Point Cloud Comparison and Volume Calculation
3. Case Study and Results
3.1. Perarolo Landslide Site
3.2. Image-Based Collapse Detection at the Perarolo Landslide Site
3.3. Volume Calculation in Perarolo Landslide Site
4. Discussion
5. Conclusions
- Full Automation. The collapse event detection algorithm based on the structural similarity metric, once calibrated, allows for reducing the need for human interaction and mitigating false positives that could arise from merely comparing 3D surfaces. This also makes it possible to potentially perform real-time detection by comparing images at very short time intervals.
- Spatial accuracy and precision. The proposed algorithm has the advantage of processing the entire image area while excluding shaded and vegetated areas. The minimum identifiable collapsed volume has been estimated for our test site but in most cases, it is not easily controllable and is certainly higher than what can be obtained by comparing laser scanner point clouds. It depends on a multitude of factors related to the collapse detection process and the 3D reconstruction process. Among the most important are factors related to the instantaneous field of view (i.e., camera resolution, sensor size, focal length), factors related to the geometry of the subject being framed and the 3D reconstruction process (i.e., distance from the camera, angle between the local plane normal and the line of sight, baseline between cameras), and factors related to the image analysis process (e.g., the type and size of the filters’ kernel applied). Further details on the quantification of errors introduced by this method can be found in [6,65]. Further insights may result from the extensive use of this technique on different landslide surfaces.
- Low-Cost and Long-Term. Digital cameras have significantly lower costs compared to laser scanner systems or interferometry. Moreover, their maintenance or replacement is easier, making the system potentially suitable for long-term monitoring.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sturzenegger, M.; Stead, D. Close-Range Terrestrial Digital Photogrammetry and Terrestrial Laser Scanning for Discontinuity Characterization on Rock Cuts. Eng. Geol. 2009, 106, 163–182. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.P.; Allemand, P.; Ulrich, P. Surface Reconstruction and Landslide Displacement Measurements with Pléiades Satellite Images. ISPRS J. Photogramm. Remote Sens. 2014, 95, 1–12. [Google Scholar] [CrossRef]
- Livio, F.A.; Bovo, F.; Gabrieli, F.; Gambillara, R.; Rossato, S.; Martin, S.; Michetti, A.M. Stability Analysis of a Landslide Scarp by Means of Virtual Outcrops: The Mt. Peron Niche Area (Masiere Di Vedana Rock Avalanche, Eastern Southern Alps). Front. Earth Sci. 2022, 10, 863880. [Google Scholar] [CrossRef]
- Antonello, M.; Gabrieli, F.; Cola, S.; Menegatti, E. Automated Landslide Monitoring through a Low-Cost Stereo Vision System. In Proceedings of the CEUR Workshop Proceedings, Paris, France, 27–28 April 2013; Volume 1107. [Google Scholar]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of Multi-Temporal Ground-Based Optical Images for Landslide Monitoring: Application, Potential and Limitations. ISPRS J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef]
- Gabrieli, F.; Corain, L.; Vettore, L. A Low-Cost Landslide Displacement Activity Assessment from Time-Lapse Photogrammetry and Rainfall Data: Application to the Tessina Landslide Site. Geomorphology 2016, 269, 56–74. [Google Scholar] [CrossRef]
- Giacomini, A.; Thoeni, K.; Santise, M.; Diotri, F.; Booth, S.; Fityus, S.; Roncella, R. Temporal-Spatial Frequency Rockfall Data from Open-Pit Highwalls Using a Low-Cost Monitoring System. Remote Sens. 2020, 12, 2459. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic Recognition of Landslide Based on CNN and Texture Change Detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation, YAC, Wuhan, China, 11–13 November 2016. [Google Scholar]
- Ghorbanzadeh, O.; Meena, S.R.; Blaschke, T.; Aryal, J. UAV-Based Slope Failure Detection Using Deep-Learning Convolutional Neural Networks. Remote Sens. 2019, 11, 2046. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Q.; Xue, D.; Chen, T.; Meng, H.; Nandi, A.K. End-to-End Change Detection Using a Symmetric Fully Convolutional Network for Landslide Mapping. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; Volume 2019. [Google Scholar]
- Lv, Z.Y.; Shi, W.; Zhang, X.; Benediktsson, J.A. Landslide Inventory Mapping from Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1520–1532. [Google Scholar] [CrossRef]
- Amit, S.N.K.B.; Aoki, Y. Disaster Detection from Aerial Imagery with Convolutional Neural Network. In Proceedings of the Proceedings—International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2017, Surabaya, Indonesia, 26–27 September 2017; Volume 2017. [Google Scholar]
- Ji, S.; Shen, Y.; Lu, M.; Zhang, Y. Building Instance Change Detection from Large-Scale Aerial Images Using Convolutional Neural Networks and Simulated Samples. Remote Sens. 2019, 11, 1343. [Google Scholar] [CrossRef]
- Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-Oriented Change Detection for Landslide Rapid Mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 701–705. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up Robust Features. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Berlin, Germany, 18–22 September 2006; Springer LNCS: Berlin, Germany, 2006; Volume 3951 LNCS. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Blanch, X.; Abellan, A.; Guinau, M. Point Cloud Stacking: A Workflow to Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras. Remote Sens. 2020, 12, 1240. [Google Scholar] [CrossRef]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (Memi) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
- Shen, B.; Chen, S.; Yin, J.; Mao, H. Image Recognition of Green Weeds in Cotton Fields Based on Color Feature. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2009, 25, 163–167. [Google Scholar] [CrossRef]
- Sanin, A.; Sanderson, C.; Lovell, B.C. Shadow Detection: A Survey and Comparative Evaluation of Recent Methods. Pattern Recognit 2012, 45, 1684–1695. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H. Structural Similarity Based Image Quality Assessment. In Digital Video Image Quality and Perceptual Coding, Ser. Series in Signal Processing and Communications; RC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Lim, J.S. Two-Dimensional Signal and Image Processing; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1990; Volume 710. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Learning to Compare Image Patches via Convolutional Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On the Mathematical Properties of the Structural Similarity Index. IEEE Trans. Image Process. 2012, 21, 1488–1499. [Google Scholar] [CrossRef]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration with Neural Networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, T. Deep Learning for Exploring Landslides with Remote Sensing and Geo-Environmental Data: Frameworks, Progress, Challenges, and Opportunities. Remote Sens. 2024, 16, 1344. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale Structural Similarity for Image Quality Assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
- Zujovic, J.; Pappas, T.N.; Neuhoff, D.L. Structural Texture Similarity Metrics for Image Analysis and Retrieval. IEEE Trans. Image Process. 2013, 22, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Liasis, G.; Stavrou, S. Satellite Images Analysis for Shadow Detection and Building Height Estimation. ISPRS J. Photogramm. Remote Sens. 2016, 119, 437–450. [Google Scholar] [CrossRef]
- Arévalo, V.; González, J.; Ambrosio, G. Shadow Detection in Colour High-Resolution Satellite Images. Int. J. Remote Sens. 2008, 29, 1945–1963. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow Detection in Very High Spatial Resolution Aerial Images: A Comparative Study. ISPRS J. Photogramm. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.B.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A Physics-Based Atmospheric and BRDF Correction for Landsat Data over Mountainous Terrain. Remote Sens. Env. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Hua, S.; Shi, P. GrabCut Color Image Segmentation Based on Region of Interest. In Proceedings of the 2014 7th International Congress on Image and Signal Processing, CISP 2014, Dalian, China, 14–16 October 2014. [Google Scholar]
- Ko, S.J.; Lee, Y.H. Center Weighted Median Filters and Their Applications to Image Enhancement. IEEE Trans. Circuits Syst. 1991, 38, 984–993. [Google Scholar] [CrossRef]
- Hwang, H.; Haddad, R.A. Adaptive Median Filters: New Algorithms and Results. IEEE Trans. Image Process. 1995, 4, 499–502. [Google Scholar] [CrossRef]
- Shrestha, S. Image Denoising Using New Adaptive Based Median Filter. Signal Image Process 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Reddi, S.S.; Rudin, S.F.; Keshavan, H.R. An Optimal Multiple Threshold Scheme for Image Segmentation. IEEE Trans. Syst. Man. Cybern. 1984, 4, 661–665. [Google Scholar] [CrossRef]
- Deng, G.; Cahill, L.W. An Adaptive Gaussian Filter for Noise Reduction and Edge Detection. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993. [Google Scholar]
- Shin, D.H.; Park, R.H.; Yang, S.; Jung, J.H. Block-Based Noise Estimation Using Adaptive Gaussian Filtering. IEEE Trans. Consum. Electron. 2005, 51, 218–226. [Google Scholar] [CrossRef]
- Tack, F.; Buyuksalih, G.; Goossens, R. 3D Building Reconstruction Based on given Ground Plan Information and Surface Models Extracted from Spaceborne Imagery. ISPRS J. Photogramm. Remote Sens. 2012, 67, 52–64. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, L.; Li, J. The Applications and Summary of Three Dimensional Reconstruction Based on Stereo Vision. In Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, ICICEE 2012, Xi’an, China, 23–25 August 2012. [Google Scholar]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Luhmann, T.; Fraser, C.; Maas, H.G. Sensor Modelling and Camera Calibration for Close-Range Photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115, 37–46. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Heikkila, J.; Silven, O. Four-Step Camera Calibration Procedure with Implicit Image Correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997. [Google Scholar]
- Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L. Image-based reconstruction and analysis of dynamic scenes in a landslide simulation facility. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 63–70. [Google Scholar] [CrossRef]
- Kjær-Nielsen, A.; Jensen, L.B.W.; SøSrensen, A.S.; Krüger, N. A Real-Time Embedded System for Stereo Vision Preprocessing Using an FPGA. In Proceedings of the 2008 International Conference on Reconfigurable Computing and FPGAs, ReConFig 2008, Cancun, Mexico, 3–5 December 2008. [Google Scholar]
- Junger, C.; Hess, A.; Rosenberger, M.; Notni, G. FPGA-Based Lens Undistortion and Image Rectification for Stereo Vision Applications. In Photonics and Education in Measurement Science; SPIE: New York, NY, USA, 2019; Volume 11144, pp. 284–291. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Hamzah, R.A.; Ibrahim, H. Literature Survey on Stereo Vision Disparity Map Algorithms. J. Sens. 2016, 2016, 8742920. [Google Scholar] [CrossRef]
- Bleyer, M.; Gelautz, M. A Layered Stereo Matching Algorithm Using Image Segmentation and Global Visibility Constraints. ISPRS J. Photogramm. Remote Sens. 2005, 59, 128–150. [Google Scholar] [CrossRef]
- Georgoulas, C.; Kotoulas, L.; Sirakoulis, G.C.; Andreadis, I.; Gasteratos, A. Real-Time Disparity Map Computation Module. Microprocess. Microsyst. 2008, 32, 159–170. [Google Scholar] [CrossRef]
- Xu, X.; Harada, K. Automatic Surface Reconstruction with Alpha-Shape Method. Vis. Comput. 2003, 19, 431–443. [Google Scholar] [CrossRef]
- Hadas, E.; Borkowski, A.; Estornell, J.; Tymkow, P. Automatic Estimation of Olive Tree Dendrometric Parameters Based on Airborne Laser Scanning Data Using Alpha-Shape and Principal Component Analysis. GIsci. Remote Sens. 2017, 54, 898–917. [Google Scholar] [CrossRef]
- Carrea, D.; Abellan, A.; Derron, M.H.; Gauvin, N.; Jaboyedoff, M. Matlab Virtual Toolbox for Retrospective Rockfall Source Detection and Volume Estimation Using 3D Point Clouds: A Case Study of a Subalpine Molasse Cliff. Geosciences 2021, 11, 75. [Google Scholar] [CrossRef]
- Brezzi, L.; Carraro, E.; Pasa, D.; Teza, G.; Cola, S.; Galgaro, A. Post-Collapse Evolution of a Rapid Landslide from Sequential Analysis with FE and SPH-Based Models. Geosciences 2021, 11, 364. [Google Scholar] [CrossRef]
- Liu, Y.; Brezzi, L.; Liang, Z.; Gabrieli, F.; Zhou, Z.; Cola, S. Image Analysis and LSTM Methods for Forecasting Surficial Displacements of a Landslide Triggered by Snowfall and Rainfall. Landslides 2024. [Google Scholar] [CrossRef]
- Teza, G.; Cola, S.; Brezzi, L.; Galgaro, A. Wadenow: A Matlab Toolbox for Early Forecasting of the Velocity Trend of a Rainfall-Triggered Landslide by Means of Continuous Wavelet Transform and Deep Learning. Geosciences 2022, 12, 205. [Google Scholar] [CrossRef]
- Brezzi, L.; Gabrieli, F.; Vallisari, D.; Carraro, E.; Pol, A.; Galgaro, A.; Cola, S. DIPHORM: An Innovative DIgital PHOtogrammetRic Monitoring Technique for Detecting Surficial Displacements of Landslides. Remote Sens. 2024, 16, 3199. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence Estimation for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef]
- Guccione, D.E.; Turvey, E.; Roncella, R.; Thoeni, K.; Giacomini, A. Proficient Calibration Methodologies for Fixed Photogrammetric Monitoring Systems. Remote Sens. 2024, 16, 2281. [Google Scholar] [CrossRef]
Date | Type of Collapse | Volume (m3) | SSI |
---|---|---|---|
09/04/2021 | Natural | 353.2 | 0.9971 |
09/06/2021 | Natural | 8558.7 | 0.9135 |
25/06/2021 | Explosive | 2739.6 | 0.9449 |
13/07/2021 | Anthropic activity | 217.9 | 0.9936 |
14/07/2021 | Anthropic activity | 457.9 | 0.9941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Gabrieli, F.; Pol, A.; Brezzi, L. Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery. Remote Sens. 2024, 16, 3233. https://doi.org/10.3390/rs16173233
Liang Z, Gabrieli F, Pol A, Brezzi L. Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery. Remote Sensing. 2024; 16(17):3233. https://doi.org/10.3390/rs16173233
Chicago/Turabian StyleLiang, Zhipeng, Fabio Gabrieli, Antonio Pol, and Lorenzo Brezzi. 2024. "Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery" Remote Sensing 16, no. 17: 3233. https://doi.org/10.3390/rs16173233
APA StyleLiang, Z., Gabrieli, F., Pol, A., & Brezzi, L. (2024). Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery. Remote Sensing, 16(17), 3233. https://doi.org/10.3390/rs16173233