Local Field-Scale Winter Wheat Yield Prediction Using VENµS Satellite Imagery and Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. VENμS Satellite Imagery and Preprocessing
2.3. Vegetation Indices
2.4. Yield Dataset
2.5. Machine Learning Regression Modelling and Cross-Validation
3. Results
3.1. Cross-Validation of Regression Models
3.2. Yield Prediction Using Regression Models
3.3. Ranked Importance of Vegetation Indices from Different Growth Stages
3.4. Visuallization of Predicted Yield
4. Discussion
Implications of Model Performance on Yield Prediction with VENμS Imagery
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, C.S.; Reynolds, W.D. Impacts of Recent Climate Trends on Agriculture in Southwestern Ontario. Can. Water Resour. J. 2003, 28, 87–97. [Google Scholar] [CrossRef]
- Reid, S.; Smit, B.; Caldwell, W.; Belliveau, S. Vulnerability and Adaptation to Climate Risks in Ontario Agriculture. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 609–637. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. Overview of Canada’s Agriculture and Agri-Food Sector. Available online: https://agriculture.canada.ca/en/sector/overview (accessed on 25 May 2024).
- Hammer, G. Applying Seasonal Climate Forecasts in Agricultural and Natural Ecosystems—A Synthesis. In Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems; Hammer, G.L., Nicholls, N., Mitchell, C., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2000; pp. 453–462. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Wang, J.; Shan, B.; Shang, J.; Dong, T.; He, Y. Near Real-Time Detection and Forecasting of within-Field Phenology of Winter Wheat and Corn Using Sentinel-2 Time-Series Data. ISPRS J. Photogramm. Remote Sens. 2023, 196, 105–119. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Leblon, B.; Song, Y. Nitrogen Estimation for Wheat Using UAV-Based and Satellite Multispectral Imagery, Topographic Metrics, Leaf Area Index, Plant Height, Soil Moisture, and Machine Learning Methods. Nitrogen 2022, 3, 1–25. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.-C.; Justice, C.; Masek, J.; Murphy, E. Winter Wheat Yield Assessment Using Landsat 8 and Sentinel-2 Data. In IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Valencia, Spain, 2018; pp. 5964–5967. [Google Scholar] [CrossRef]
- Zhang, C.; Marzougui, A.; Sankaran, S. High-Resolution Satellite Imagery Applications in Crop Phenotyping: An Overview. Comput. Electron. Agric. 2020, 175, 105584. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and Yield Estimation Based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Landsat 8 (L8) Data Users Handbook; USGS: Sioux Falls, SD, USA, 2019; pp. 1–93.
- European Space Agency (ESA). Sentinel-2 User Handbook; ESA: Paris, France, 2015; pp. 1–64. [Google Scholar]
- Centre National d’Etudes Spatiales (CNES); Israeli Space Agency (ISA). The VENμS Mission and Products; CNES: Paris, France; ISA: Tel Aviv, Israel, 2023; pp. 1–26.
- Bukowiecki, J.; Rose, T.; Kage, H. Sentinel-2 Data for Precision Agriculture?—A UAV-Based Assessment. Sensors 2021, 21, 2861. [Google Scholar] [CrossRef]
- Transport Canada. Flying Your Drone Safely and Legally. Available online: https://tc.canada.ca/en/aviation/drone-safety/learn-rules-you-fly-your-drone/flying-your-drone-safely-legally (accessed on 28 June 2024).
- Xie, Q.; Huang, W.; Liang, D.; Chen, P.; Wu, C.; Yang, G.; Zhang, J.; Huang, L.; Zhang, D. Leaf Area Index Estimation Using Vegetation Indices Derived from Airborne Hyperspectral Images in Winter Wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3586–3594. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Leblon, B. Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn. Remote Sens. 2021, 13, 3105. [Google Scholar] [CrossRef]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter Wheat Biomass Estimation Based on Spectral Indices, Band Depth Analysis and Partial Least Squares Regression Using Hyperspectral Measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D.; Stępień, M.; Samborski, S.; Ruciński, D.; Buszke, B. Within-Field Relationships between Satel-lite-Derived Vegetation Indices, Grain Yield and Spike Number of Winter Wheat and Triticale. Agronomy 2020, 10, 1842. [Google Scholar] [CrossRef]
- Atkinson Amorim, J.G.; Schreiber, L.V.; de Souza, M.R.Q.; Negreiros, M.; Susin, A.; Bredemeier, C.; Trentin, C.; Vian, A.L.; de Oliveira Andrades-Filho, C.; Doering, D.; et al. Biomass Estimation of Spring Wheat with Machine Learning Methods Using UAV-Based Multispectral Imaging. Int. J. Remote Sens. 2022, 43, 4758–4773. [Google Scholar] [CrossRef]
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef]
- Nigam, A.; Garg, S.; Agrawal, A.; Agrawal, P. Crop Yield Prediction Using Machine Learning Algorithms. In 2019 Fifth International Conference on Image Information Processing (ICIIP); IEEE: Shimla, India, 2019; pp. 125–130. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High Resolution Wheat Yield Mapping Using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Ontario Ministry of Agriculture, Food and Rural Affairs. Census Farm Data Collection; Ontario Data Catalogue, Canada. 2022. Available online: https://data.ontario.ca/dataset/census-farm-data-collection (accessed on 26 May 2024).
- Zhang, Y.; Qin, Q.; Ren, H.; Sun, Y.; Li, M.; Zhang, T.; Ren, S. Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction. Remote Sens. 2018, 10, 2015. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving In-Season Estimation of Rice Yield Potential and Responsiveness to Topdressing Nitrogen Application with Crop Circle Active Crop Canopy Sensor. Precision Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ Based Accuracy Assessment of Leaf Area Index Products for Canada Derived from SPOT-4 VEGETATION Data. Can. J. Remote Sens. 2003, 29, 241–258. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de La Haute Resolution Spectrale Pour Suivre L’etat Des Couverts Vegetaux. Spectr. Signat. Objects Remote Sens. 1988, 287, 279–286. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
Growth Stage | VENμS Overpass |
---|---|
Tillering-1 | 20200503 |
Tillering-2 | 20200513 |
Stem Elongation | 20200521 |
Booting | 20200525 |
Heading | 20200606 |
Flowering | 20200612 |
Early Fruit (Grain) Development | 20200616 |
Late Fruit (Grain) Development | Cloud Cover |
Ripening | 20200706 |
Bands | Central Wavelength (nm) | Bandwidth (nm) |
---|---|---|
1 | 423.9 | 40 |
2 | 446.9 | 40 |
3 | 491.9 | 40 |
4 | 555 | 40 |
5 | 619.7 | 40 |
6 | 619.5 | 40 |
7 | 666.2 | 30 |
8 | 702 | 24 |
9 | 741.1 | 16 |
10 | 782.2 | 16 |
11 | 861.1 | 40 |
12 | 908.7 | 20 |
VI 1 | Formula 2 | Original Authors |
---|---|---|
ARVI | Kaufman and Tanre [33] | |
DVI-1 | Richardson and Wiegand [34] | |
DVI-2 | ||
EVI | Huete et al. [35] | |
ISR-1 | Fernades et al. [36] | |
ISR-2 | ||
MCARI | Daughtry et al. [37] | |
MSAVI-1 | Qi et al. [38] | |
MSAVI-2 | ||
NDRE-1 | Gitelson and Merzlyak [39] | |
NDRE-2 | ||
NDVI-1 | Rouse et al. [40] | |
NDVI-2 | ||
OSAVI | Rondeaux et al. [41] | |
RDVI | Roujean and Breon [42] | |
REP | Guyot and Baret [43] | |
RVI-1 | Jordan [44] | |
RVI-2 | ||
SAVI-1 | Huete [45] | |
SAVI-2 | ||
SAVI-3 |
Growth Stage | Model | Calibration | Validation | ||
---|---|---|---|---|---|
R2 | RMSE (t/ha) | R2 | RMSE (t/ha) | ||
Tillering-1 | RF | 0.94 | 0.3017 | 0.50 | 0.7335 |
SVR | 0.54 | 0.7057 | 0.50 | 0.7421 | |
Tillering-2 | RF | 0.94 | 0.2953 | 0.53 | 0.7116 |
SVR | 0.55 | 0.6971 | 0.53 | 0.7208 | |
Stem Elongation | RF | 0.94 | 0.2727 | 0.61 | 0.6510 |
SVR | 0.63 | 0.6358 | 0.61 | 0.6539 | |
Booting | RF | 0.95 | 0.2607 | 0.64 | 0.6264 |
SVR | 0.66 | 0.6032 | 0.65 | 0.6177 | |
Heading | RF | 0.96 | 0.2186 | 0.74 | 0.5283 |
SVR | 0.77 | 0.4989 | 0.74 | 0.5319 | |
Flowering | RF | 0.96 | 0.2181 | 0.75 | 0.5254 |
SVR | 0.77 | 0.4907 | 0.75 | 0.5183 | |
Early Fruit Development | RF | 0.96 | 0.2039 | 0.77 | 0.5008 |
SVR | 0.79 | 0.4696 | 0.77 | 0.5039 | |
Ripening | RF | 0.95 | 0.2653 | 0.61 | 0.6494 |
SVR | 0.61 | 0.6418 | 0.59 | 0.6709 |
Dataset Group | Growth Stage Combinations | Model | Calibration | Validation | ||
---|---|---|---|---|---|---|
R2 | RMSE (t/ha) | R2 | RMSE (t/ha) | |||
Pre-heading Stage | Stem Elongation + Booting | RF | 0.96 | 0.2241 | 0.72 | 0.5561 |
SVR | 0.75 | 0.5189 | 0.73 | 0.5465 | ||
Tillering-2 + Stem Elongation + Booting | RF | 0.97 | 0.2119 | 0.74 | 0.5353 | |
SVR | 0.79 | 0.4788 | 0.75 | 0.5165 | ||
Tillering-1, 2 + Stem Elongation + Booting | RF | 0.97 | 0.2038 | 0.75 | 0.5210 | |
SVR | 0.82 | 0.4431 | 0.78 | 0.4917 | ||
Post-heading Stage | Flowering + Early Fruit Development | RF | 0.97 | 0.1902 | 0.79 | 0.4810 |
SVR | 0.81 | 0.4462 | 0.79 | 0.4814 | ||
Heading + Flowering + Early Fruit Development | RF | 0.97 | 0.1798 | 0.81 | 0.4570 | |
SVR | 0.84 | 0.4116 | 0.81 | 0.4507 | ||
All Data (Ripening excluded) | RF | 0.98 | 0.1640 | 0.83 | 0.4257 | |
SVR | 0.89 | 0.3437 | 0.86 | 0.3925 |
Dataset Group | Growth Stage Combinations | Model | Calibration | Validation | ||
---|---|---|---|---|---|---|
R2 | RMSE (t/ha) | R2 | RMSE (t/ha) | |||
Pre-heading Stage | Stem Elongation + Booting | RF | 0.96 | 0.2557 | 0.70 | 0.6280 |
SVR | 0.76 | 0.5452 | 0.72 | 0.5997 | ||
Tillering-1 + Stem Elongation + Booting | RF | 0.96 | 0.2476 | 0.71 | 0.6106 | |
SVR | 0.78 | 0.5237 | 0.74 | 0.5835 | ||
Post-heading Stage | Flowering + Early Fruit Development | RF | 0.97 | 0.2167 | 0.78 | 0.5379 |
SVR | 0.82 | 0.4728 | 0.79 | 0.5238 | ||
Heading + Flowering + Early Fruit Development | RF | 0.97 | 0.2121 | 0.78 | 0.5310 | |
SVR | 0.83 | 0.4615 | 0.79 | 0.5190 | ||
All Data (Ripening excluded) | RF | 0.97 | 0.2091 | 0.78 | 0.5287 | |
SVR | 0.84 | 0.4434 | 0.79 | 0.5147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, M.S.; Wang, J. Local Field-Scale Winter Wheat Yield Prediction Using VENµS Satellite Imagery and Machine Learning Techniques. Remote Sens. 2024, 16, 3132. https://doi.org/10.3390/rs16173132
Chiu MS, Wang J. Local Field-Scale Winter Wheat Yield Prediction Using VENµS Satellite Imagery and Machine Learning Techniques. Remote Sensing. 2024; 16(17):3132. https://doi.org/10.3390/rs16173132
Chicago/Turabian StyleChiu, Marco Spencer, and Jinfei Wang. 2024. "Local Field-Scale Winter Wheat Yield Prediction Using VENµS Satellite Imagery and Machine Learning Techniques" Remote Sensing 16, no. 17: 3132. https://doi.org/10.3390/rs16173132
APA StyleChiu, M. S., & Wang, J. (2024). Local Field-Scale Winter Wheat Yield Prediction Using VENµS Satellite Imagery and Machine Learning Techniques. Remote Sensing, 16(17), 3132. https://doi.org/10.3390/rs16173132