The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area
Abstract
:1. Introduction
2. Data and Methods
2.1. Research Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. Normalized Difference Vegetation Index (NDVI)
2.2.3. Land Use Data
2.2.4. Landform Data
2.3. Research Methods
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)
2.3.2. Slope Trend Analysis
2.3.3. Mann–Kendall Test
2.3.4. Geodetectors
3. Results
3.1. Drought Spatiotemporal Analysis
3.2. Spatial and Temporal Distribution of Vegetation
3.3. Correlation Analysis
3.3.1. Correlation Analysis between SPEI and NDVI at Different Time Scales
3.3.2. Correlation between Drought and Vegetation in Different Land Use Types
3.3.3. Correlation between Drought and Vegetation of Different Landforms
3.4. Interaction and Factor Analysis
4. Discussion
4.1. Distribution Characteristics of Drought in the Study Area
4.2. Temporal and Spatial Changes in Vegetation Coverage in the Study Area
4.3. Impact of Land Use and Landform Types on SPEI
4.4. Factors Affecting the Spatiotemporal Variation in SPEI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.; Hughes, M.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Scherer, S.J. Observational and model evidence of stronger heat waves under global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 16745–16750. [Google Scholar]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2012, 3, 57–79. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Hoerling, M.; Kumar, A. The perfect ocean for drought. Science 2003, 299, 691–694. [Google Scholar] [CrossRef] [PubMed]
- UNEP. The Front Line: Shoreline to Alpine Summit—The Global Environmental Outlook for the Environment; United Nations Environment Programme: Nairobi, Kenya, 2008. [Google Scholar]
- Wilhite, D.A. Drought and Water Crises: Science, Technology, and Management Issues; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Smith, T.; Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 2023, 14, 498. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, X.; Wang, S.; Zhou, G. Past and future adverse response of terrestrial water storages to increased vegetation growth in drylands. npj Clim. Atmos. Sci. 2023, 6, 113. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Chen, A.; Huntingford, C.; Fu, B.; Li, L.Z.X.; Huang, J.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Y.P.; Li, Z.; Liu, Y.C.; Huang, W.J.; Liu, X.G.; Feng, M.Q. Analysis of the Impact of Global Climate Change on Dryland Areas. Adv. Earth Sci. 2022, 37, 111–119. [Google Scholar]
- Sungmin, O.; Seon, K.P. Global ecosystem responses to flash droughts are modulated by background climate and vegetation conditions. Commun. Earth Environ. 2024, 5, 88. [Google Scholar]
- Liu, H.; Jiang, L.L.; Liu, B. The characteristics of drought in China over the past 40 years and its impact on vegetation changes. Acta Ecol. Sin. 2023, 43, 7936–7949. [Google Scholar]
- Zhang, Y.; Gu, T.; He, S.; Cheng, F.; Wang, J.; Ye, H.; Zhang, Y.; Su, H.; Li, Q. Extreme drought along the tropic of cancer (Yunnan section) and its impact on vegetation. Sci. Rep. 2024, 14, 7508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.X.; Su, X.L.; Hao, L.N.; Wu, H.J. Response of vegetation to drought based on NDVI and scPDSI datasets from 1982 to 2015 across China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 145–151. [Google Scholar]
- Wang, T.Y.; Wang, P.; Wu, Z.N. Progress in the study of ecological resilience of vegetation under drought stress. Adv. Earth Sci. 2023, 38, 790–801. [Google Scholar]
- Ding, Y.B. Research on the Response of Different Types of Vegetation in Northern China to Drought and the Future Trend of Vegetation Coverage Change. Master’s Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Li, Y.Y.; Dong, G.T.; Xue, H.Z.; Zheng, Y.C.; Lian, Y.K. Impact of multi-timescale meteorological drought on vegetation from 1982 to 2020 in the Yellow River Basin. J. Soil Water Conserv. 2024, 38, 187–196. [Google Scholar]
- Wang, Z.; Fu, B.; Wu, X. Vegetation resilience does not increase consistently with greening in China’s Loess Plateau. Commun. Earth Environ. 2023, 4, 336. [Google Scholar] [CrossRef]
- Ma, W.S.; Ma, C.; Zhao, P.F.; Liu, W.W.; Ma, W. Trend of NDVI3g change and climatic response from 1982 to 2013 in the Lu’an mining area. Environ. Sci. Res. 2017, 30, 1050–1058. [Google Scholar]
- Ma, J.Z.; Hao, L. Spatiotemporal variation characteristics of drought in the Xilingol grassland based on SPI and SPEI indices. Pratacultural Sci. 2021, 38, 2327–2339. [Google Scholar]
- Lu, J.Q.; Meng, F.H.; Luo, M. The Impact of Meteorological and Hydrological Drought Changes in the Inner Mongolia Section of the Yellow River Basin on Vegetation NDVI [J/OL]. Renmin Pearl River 2024, 45, 1–14. [Google Scholar]
- Xu, J.; Wang, L.; Wang, Y. Spatiotemporal dynamics of vegetation NDVI from 2000 to 2017 in the Shendong mining area. Res. Soil Water Conserv. 2021, 28, 153–158. [Google Scholar]
- Shao, T.Y.; Bao, S.Q.; Wang, N. Monitoring of spatiotemporal dynamic changes of drought based on TVDI—Taking the Shendong mining area as an example. J. Irrig. Drain. 2023, 42, 59–66. [Google Scholar]
- Wang, X.Y.; Yang, J.; Lin, L.G. Study on the spatiotemporal variation rules of vegetation coverage in Shaanxi Province based on Sen+Mann-Kendall. Agric. Technol. 2023, 43, 62–66. [Google Scholar]
- Liu, X.J.; Xiao, J. Research on the runoff variation of the Weihe River from 1956 to 2016 based on the MK test and wavelet analysis method. Shaanxi Water Resour. 2023, 9, 32–34. [Google Scholar]
- Wang, Y.B.; Zhang, G.Y.; Liu, Y.Y. Research on the evolution of vegetation pattern and its driving mechanism in the Yanhe River Basin. J. Ecol. Rural. Environ. 2024, 1–23. [Google Scholar]
- Tian, J.X. Research on the Warming and Humidification Trend of Climate in Northwest China and Its Impact on Vegetation Restoration. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2023. [Google Scholar]
- Zhao, Y.Q.; Wei, T.X. Changes in vegetation coverage and influencing factors from 1990 to 2020 in typical counties of the Loess Plateau. Res. Arid. Zone 2024, 41, 147–156. [Google Scholar]
- Li, X.; Wang, X.K.; Liu, X.H. Spatiotemporal change and climatic factor detection of vegetation NDVI from 2000 to 2020 in Shaanxi Province. Res. Soil Water Conserv. 2024, 31, 443–453. [Google Scholar]
- Yue, H.; Liu, Y.; Zhu, R. Monitoring of ecological environment changes in the Shendong mining area based on remote sensing ecological indices. Bull. Soil Water Conserv. 2019, 39, 101–107+114. [Google Scholar]
- Li, D.; An, L.; Zhong, S.; Shen, L.; Wu, S. Declining coupling between vegetation and drought over the past three decades. Glob. Chang. Biol. 2024, 30, e17141. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhou, Y.; Liang, J.; Zou, D.; Wu, J.; Wang, J. Assessment of Spatiotemporal Patterns and the Effect of the Relationship between Meteorological Drought and Vegetation Dynamics in the Yangtze River Basin Based on Remotely Sensed Data. Remote Sens. 2023, 15, 3641. [Google Scholar] [CrossRef]
- Xiao, A.G.; Maidimu, M.; Huang, C.J. Spatiotemporal characteristics of dry and wet changes in Northwest China from 1901 to 2020. Quat. Sci. 2023, 43, 1730–1738. [Google Scholar]
- Yuan, X.; Wang, Y.M.; Zhang, M. Some thoughts on sudden drought research. J. Atmos. Sci. 2020, 43, 1086–1095. [Google Scholar]
- Lin, J.; Bo, W.; Dong, X.; Zhang, R.; Yan, J.P.; Chen, T. Evolution of vegetation cover and impacts of climate change and human activities in arid regions of Northwest China: A Mu Us Sandy Land case. Environ. Dev. Sustain. 2024, 3, 1–20. [Google Scholar] [CrossRef]
- Wang, J.R.; Sun, C.J.; Zheng, Z.J.; Li, X.M. Drought characteristics and their relationship with atmospheric circulation in the Loess Plateau over the past 57 years. Acta Ecol. Sin. 2021, 41, 5340–5351. [Google Scholar]
- Gao, X.Y.; Hao, H.C.; Zhang, X.Q.; Chen, Y.N. Response of vegetation water use efficiency changes to meteorological elements in arid areas of Northwest China—Taking Xinjiang as an example. Arid. Zone Geogr. 2023, 46, 1111–1120. [Google Scholar]
- Ji, Z.X.; Pei, T.T.; Chen, Y.; Qin, G.X.; Hou, Q.Q.; Xie, B.P.; Wu, H.W. Changes in vegetation phenology in the Loess Plateau and its response to seasonal climate change. Acta Ecol. Sin. 2021, 41, 6600–6612. [Google Scholar]
- Li, H.T.; Li, N.; Xian, M.R. Spatiotemporal change analysis of vegetation coverage in the Shendong mining area based on MODIS. For. Constr. 2021, 5, 47–52. [Google Scholar]
- Kong, X.; Mao, J.; Chen, H.; Wang, Y.; Zhang, Y.; Shi, X.; Jin, M. Exploring the environmental drivers of vegetation seasonality changes in the northern extratropical latitudes: A quantitative analysis. Environ. Res. Lett. 2023, 18, 094071. [Google Scholar] [CrossRef]
- Zhou, L.H.; Zhang, K. Spatiotemporal change of vegetation coverage and its influencing factors in Yan’an City from 2000 to 2020. Bull. Soil Water Conserv. 2023, 43, 356–365. [Google Scholar]
- Song, Y.; Jiao, W.; Wang, J.; Wang, L. Increased global vegetation productivity despite rising atmospheric dryness over the last two decades. Earth’s Future 2022, 10, e2021EF002634. [Google Scholar] [CrossRef]
- Matthew, P.D.; Erika, K.W.; William, K.S. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 2019, 5, eaaw0667. [Google Scholar]
- Liu, S.H.; Xue, L.Q.; Ying, X.; Yang, M.J.; Liu, Y.H.; Han, Q.; Ma, J.T. Dynamic process of ecosystem water use efficiency and response to drought in the Yellow River Basin, China. Sci. Total Environ. 2024, 934, 173339. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Wang, W.G.; Chen, Z.F. The impact of global arid areas’ saturated vapor pressure deficit and root zone soil moisture changes on vegetation productivity and its causes. Acta Ecol. Sin. 2024, 11, 1–12. [Google Scholar]
- Hao, Y.; Zhang, J.; Li, B.Q. Response characteristics of NPP of vegetation to meteorological drought in China from 2001 to 2020. Hydropower Energy Sci. 2024, 8, 17–21. [Google Scholar]
- Gao, Y.; Zhang, L.Y.; Yang, W.T. Temporal and spatial variation of drought and its impact on NDVI in North China. Chin. J. Agrometeorol. 2019, 45, 374–389. [Google Scholar]
- Shan, W.; Jin, X.B.; Meng, X.S.; Yang, X.Y.; Xu, Z.G.; Gu, Z.M.; Zhou, Y.K. Dynamic monitoring of land consolidation ecological environment quality based on multi-source remote sensing data. Trans. Chin. Soc. Agric. Eng. 2019, 35, 234–242. [Google Scholar]
Grade | Type | SPEI Value |
---|---|---|
1 | Extremely wet | 2 < SPEI |
2 | Severely wet | 1.5 < SPEI ≤ 2 |
3 | Moderately moist | 1 < SPEI ≤ 1.5 |
4 | Mildly moist | 0.5 < SPEI ≤ 1 |
5 | Normal dry and wet conditions | −0.5 < SPEI ≤ 0.5 |
6 | Mild drought | −1.0 < SPEI ≤ −0.5 |
7 | Moderate drought | −1.5 < SPEI ≤ −1.0 |
8 | Severe drought | −2.0 < SPEI ≤ −1 |
9 | Extreme drought | SPEI ≤ −2.0 |
Interaction Type | Description |
---|---|
Non-linear attenuation | q(X1∩X2) < min[q(X1),q(X2)] |
Single-factor non-linear attenuation | min[q(X1),q(X2)] < q(X1∩X2) < max[q(X1),q(X2)] |
Double-factor enhancement | q(X1∩X2) > max[q(X1),q(X2)] |
Independent | q(X1∩X2) = q(X1) + q(X2) |
Non-linear enhancement | q(X1∩X2) > q(X1) + q(X2) |
Layer | NDVI | NDVI_Slpoe | DEM |
---|---|---|---|
NDVI | 1.00 | / | −1.33645 |
NDVI_slpoe | / | 1.00 | −1.15056 |
DEM | −1.33645 | −1.15056 | 1.00 |
Related | Farmland | Forests | Grasslands | Water | Wasteland | Unutilized |
---|---|---|---|---|---|---|
SPEI01 | 0.07 | 0.34 | −0.01 | −0.25 | −0.17 | −0.15 |
SPEI03 | 0.34 | 0.36 | 0.11 | 0.07 | −0.03 | 0.01 |
SPEI06 | −0.02 | 0.28 | 0.00 | −0.04 | −0.12 | −0.03 |
SPEI12 | −0.15 | 0.42 | −0.16 | −0.26 | −0.34 | 0.08 |
Relevance | Middle-Altitude Loess Hills and Ridges | Mid-Altitude Aeolian Landforms | Low-Altitude Alluvial Plain | Middle-Altitude Erosion Plain |
---|---|---|---|---|
SPEI01 | 0.64 | 0.48 | 0.34 | 0.20 |
SPEI03 | 0.62 | 0.50 | 0.40 | 0.18 |
SPEI06 | 0.41 | 0.29 | 0.23 | 0.10 |
SPEI12 | 0.35 | 0.16 | 0.10 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Qin, H.; Zhang, X.; Xue, H.; Wang, S.; Zhang, H. The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area. Remote Sens. 2024, 16, 2843. https://doi.org/10.3390/rs16152843
Chen Z, Qin H, Zhang X, Xue H, Wang S, Zhang H. The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area. Remote Sensing. 2024; 16(15):2843. https://doi.org/10.3390/rs16152843
Chicago/Turabian StyleChen, Zhichao, He Qin, Xufei Zhang, Huazhu Xue, Shidong Wang, and Hebing Zhang. 2024. "The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area" Remote Sensing 16, no. 15: 2843. https://doi.org/10.3390/rs16152843
APA StyleChen, Z., Qin, H., Zhang, X., Xue, H., Wang, S., & Zhang, H. (2024). The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area. Remote Sensing, 16(15), 2843. https://doi.org/10.3390/rs16152843