North American Circum-Arctic Permafrost Degradation Observation Using Sentinel-1 InSAR Data
Abstract
:1. Introduction
2. Study Areas and Datasets
2.1. Study Regions
2.1.1. North Slope of Alaska (sedge)
2.1.2. Northern Great Bear Lake, Canada (dwarf shrub and needleleaf forest)
2.1.3. Southern Angikuni Lake, Canada (lichen and moss)
2.2. Datasets
3. Methods
3.1. InSAR Processing of Sentinel-1 Dataset
3.2. Interannual Interferogram Analysis
3.3. Mosaicking
4. Results
4.1. Interferometric Coherence Time Series under Different Landscape Features
4.2. Long-Term Surface Deformation in Typical Permafrost Regions
4.2.1. North Slope of Alaska (sedge)
4.2.2. Northern Great Bear Lake, Canada (dwarf shrub and needleleaf forest)
4.2.3. Southern Angikuni Lake, Canada (lichen and moss)
4.3. Analysis of InSAR Results in Typical Permafrost Regions
5. Discussion
5.1. Precision Validation of the InSAR Technique
5.2. In Situ Comparison
5.3. Effectiveness of Sentinel-1 InSAR over Continuous Permafrost
6. Conclusions
- Two-stage interferogram selection strategy: Winter snow cover leads to decorrelation, limiting our data acquisition to the summer months. After analyzing all the possible interferograms for two adjacent thawing seasons, we found that the interannual interferograms for approximate thawing days in adjacent years showed sufficiently high coherence. This suggests that it is possible to reconstruct the long-term deformation time series of permafrost. Therefore, we introduce a two-stage interferogram selection strategy that enables us to infer the effective multi-year deformation of permafrost, thereby reflecting its degradation status.
- Deformation patterns in North America: (1) Most permafrost areas in typical North American circum-Arctic landscapes have deformation rates between −15 mm/yr and 10 mm/yr. Using −5 mm/yr as the threshold, permafrost degradation occurs in 32.3% of the sedge-dominated tundra region, 47.3% of the dwarf shrub and needleleaf forest region, and 33.0% of the lichen and moss region. (2) In the shrub and needleleaf forest areas affected by wildfires, there is a trend of accelerated surface subsidence, with subsidence rates ranging from −25 mm/yr to −15 mm/yr. Even a decade after the wildfires, severe subsidence is still present in these areas, reflecting the long-term and profound effects of wildfires on permafrost. (3) Other areas of severe permafrost subsidence are concentrated in the coastal alluvial plains of the Alaskan North Slope and inland lakeshore plains, which may be due to the erosive impacts of seawater or lake water that intensifies the permafrost degradation. (4) Notably, the drained thermokarst lake basin on the Alaskan North Slope exhibits significant surface uplift. This is attributed to the partial drainage of thermokarst lakes, which exposes previously submerged permafrost to low winter temperatures, resulting in greater frost-heave uplift. This suggests that areas where uplift is occurring may also be experiencing degradation of permafrost.
- Degradation of permafrost in North America: The surface deformation patterns of permafrost in the North American circum-Arctic, as obtained through multi-year InSAR monitoring, indicate that more than one-third of the permafrost in North America in the study area is experiencing degradation. Permafrost degradation is more severe in areas affected by wildfires and human activities. Such degradation can lead to the release of large amounts of carbon stored in permafrost, thereby accelerating global warming.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Walter Anthony, K.; Olefeldt, D.; Schuur, E.A.G.; Koven, C.; McGuire, A.D.; Grosse, G.; Kuhry, P.; et al. Permafrost Collapse Is Accelerating Carbon Release. Nature 2019, 569, 32–34. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Farquharson, L.M.; Roy-Léveillée, P.; Veremeeva, A.; Kanevskiy, M.Z.; Gaglioti, B.V.; Breen, A.L.; Parsekian, A.D.; Ulrich, M.; et al. Lake and Drained Lake Basin Systems in Lowland Permafrost Regions. Nat. Rev. Earth Environ. 2022, 3, 85–98. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Weyer, N. The Ocean and Cryosphere in a Changing Climate. IPCC Spec. Rep. Ocean Cryosphere A Chang. Clim. 2019, 1155, 203–321. [Google Scholar]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost Is Warming at a Global Scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef]
- Anthony, K.M.W.; Zimov, S.A.; Grosse, G.; Jones, M.C.; Anthony, P.M.; Iii, F.S.C.; Finlay, J.C.; Mack, M.C.; Davydov, S.; Frenzel, P.; et al. A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature 2014, 511, 452–456. [Google Scholar] [CrossRef]
- Hugelius, G.; Loisel, J.; Chadburn, S.; Jackson, R.B.; Jones, M.; MacDonald, G.; Marushchak, M.; Olefeldt, D.; Packalen, M.; Siewert, M.B.; et al. Large Stocks of Peatland Carbon and Nitrogen Are Vulnerable to Permafrost Thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef]
- Miner, K.R.; Turetsky, M.R.; Malina, E.; Bartsch, A.; Tamminen, J.; McGuire, A.D.; Fix, A.; Sweeney, C.; Elder, C.D.; Miller, C.E. Permafrost Carbon Emissions in a Changing Arctic. Nat. Rev. Earth Environ. 2022, 3, 55–67. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Voigt, C.; Marushchak, M.E.; Abbott, B.W.; Biasi, C.; Elberling, B.; Siciliano, S.D.; Sonnentag, O.; Stewart, K.J.; Yang, Y.; Martikainen, P.J. Nitrous Oxide Emissions from Permafrost-Affected Soils. Nat. Rev. Earth Environ. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wahr, J. InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska. J. Geophys. Res. Earth Surf. 2010, 115, F03023. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Shiklomanov, N.I.; Little, J.D.; Nelson, F.E.; Brown, J.; Nyland, K.E.; Klene, A.E. Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962–2015. Permafr. Periglac 2017, 28, 566–572. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.; Feng, G.; Wang, Q.; Hu, J. Monitoring Surface Deformation over Permafrost with an Improved SBAS-InSAR Algorithm: With Emphasis on Climatic Factors Modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Rouyet, L.; Lauknes, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal Dynamics of a Permafrost Landscape, Adventdalen, Svalbard, Investigated by InSAR. Remote Sens. Environ. 2019, 231, 111236. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, H.; Wang, M.; Liu, X.; Chen, Q.; Wang, C.; Zhang, H. A Review of Satellite Synthetic Aperture Radar Interferometry Applications in Permafrost Regions: Current Status, Challenges, and Trends. IEEE Geosci. Remote Sens. Mag. 2022, 10, 93–114. [Google Scholar] [CrossRef]
- Ma, P.; Wang, W.; Zhang, B.; Wang, J.; Shi, G.; Huang, G.; Chen, F.; Jiang, L.; Lin, H. Remotely Sensing Large- and Small-Scale Ground Subsidence: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens. Environ. 2019, 232, 111282. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Zhang, H.; You, H.; Zhang, W.; Duan, W.; Wang, J.; Dong, L.; Zhang, B. First Mapping of China Surface Movement Using Supercomputing Interferometric SAR Technique. Sci. Bull. 2021, 66, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wang, C.; Tang, Y.; Zhang, B.; Zhang, H.; Dong, L. Interferometric SAR Observation of Permafrost Status in the Northern Qinghai-Tibet Plateau by ALOS, ALOS-2 and Sentinel-1 between 2007 and 2021. Remote Sens. 2022, 14, 1870. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, C.; Tang, Y.; Zhang, H.; Li, T.; Zou, L.; Guan, S. Adaptive High Coherence Temporal Subsets SBAS-InSAR in Tropical Peatlands Degradation Monitoring. Remote Sens. 2023, 15, 4461. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B.M.; Zhang, T.; Parsekian, A.D.; Zebker, H.A. Seasonal Thaw Settlement at Drained Thermokarst Lake Basins, Arctic Alaska. Cryosphere 2014, 8, 815–826. [Google Scholar] [CrossRef]
- Liu, L.; Jafarov, E.E.; Schaefer, K.M.; Jones, B.M.; Zebker, H.A.; Williams, C.A.; Rogan, J.; Zhang, T. InSAR Detects Increase in Surface Subsidence Caused by an Arctic Tundra Fire. Geophys. Res. Lett. 2014, 41, 3906–3913. [Google Scholar] [CrossRef]
- Strozzi, T.; Antonova, S.; Günther, F.; Mätzler, E.; Vieira, G.; Wegmüller, U.; Westermann, S.; Bartsch, A. Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas. Remote Sens. 2018, 10, 1360. [Google Scholar] [CrossRef]
- Short, N.; LeBlanc, A.-M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for Ground Displacement in Permafrost Terrain, Validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Sentinel-1 InSAR Measurements of Deformation over Discontinuous Permafrost Terrain, Northern Quebec, Canada. Remote Sens. Environ. 2020, 248, 111965. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps. J. Geophys. Res. Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Jacome, A.; Poulin, J.; Ludwig, R. Comparison of TerraSAR-X and ALOS PALSAR Differential Interferometry with Multisource DEMs for Monitoring Ground Displacement in a Discontinuous Permafrost Region. IEEE J.-Stars 2017, 10, 4074–4093. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Li, Z.; Chen, Q.; Zhou, J. Interaction between Permafrost and Infrastructure along the Qinghai–Tibet Railway Detected via Jointly Analysis of C- and L-Band Small Baseline SAR Interferometry. Remote Sens. Environ. 2012, 123, 532–540. [Google Scholar] [CrossRef]
- Hooper, A. A Multi-Temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches. Geophys. Res. Lett. 2008, 35, 532–540. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000–2016 at 1 km2 Scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2016 Land Cover for the Conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development. Remote Sens. 2017, 9, 1098. [Google Scholar] [CrossRef]
- Brown, J.; Sellmann, P.V. Permafrost and Coastal Plain History of Arctic Alaska. Alsk. Arct. Tundra. Tech. Pap. 1973, 25, 31–47. [Google Scholar]
- Survey (US), G.; Reimnitz, E.; Graves, S.M.; Barnes, P.W. Beaufort Sea Coastal Erosion, Sediment Flux, Shoreline Evolution, and the Erosional Shelf Profile; US Geological Survey: Reston, VA, USA, 1988.
- Jones, B.M.; Arp, C.D. Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafr. Periglac 2015, 26, 119–128. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.M.; Chen, A.C.; Gusmeroli, A.; Zebker, H.A.; Zhang, T. Remote Sensing Measurements of Thermokarst Subsidence Using InSAR. J. Geophys. Res. Earth Surf. 2015, 120, 1935–1948. [Google Scholar] [CrossRef]
- Bartsch, A.; Leibman, M.; Strozzi, T.; Khomutov, A.; Widhalm, B.; Babkina, E.; Mullanurov, D.; Ermokhina, K.; Kroisleitner, C.; Bergstedt, H. Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016. Remote Sens. 2019, 11, 1865. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Pullman, E.R.; Torre Jorgenson, M.; Shur, Y. Thaw Settlement in Soils of the Arctic Coastal Plain, Alaska. Arct. Antarct. Alp. Res. 2007, 39, 468–476. [Google Scholar] [CrossRef]
- Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of Stratified Tropospheric Delays in SAR Interferometry: Validation with Global Atmospheric Models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Rudy, A.C.A.; Lamoureux, S.F.; Treitz, P.; Short, N.; Brisco, B. Seasonal and Multi-Year Surface Displacements Measured by DInSAR in a High Arctic Permafrost Environment. Int. J. Appl. Earth Obs. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Usai, S. A Least Squares Database Approach for SAR Interferometric Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 753–760. [Google Scholar] [CrossRef]
- Grosse, G.; Jones, B.M.; Arp, C.D. Thermokarst Lakes, Drainage, and Drained Basins. In Treatise on Geomorphology; Shroder, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 8, pp. 325–353. [Google Scholar]
- Hu, Y.; Liu, L.; Larson, K.M.; Schaefer, K.M.; Zhang, J.; Yao, Y. GPS Interferometric Reflectometry Reveals Cyclic Elevation Changes in Thaw and Freezing Seasons in a Permafrost Area (Barrow, Alaska). Geophys. Res. Lett. 2018, 45, 5581–5589. [Google Scholar] [CrossRef]
- Fraser, R.H.; Li, Z.; Cihlar, J. Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest. Remote Sens. Environ. 2000, 74, 362–376. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Z.; Wu, Y. Accelerated Permafrost Degradation in Thermokarst Landforms in Qilian Mountains from 2007 to 2020 Observed by SBAS-InSAR. Ecol. Indic. 2024, 159, 111724. [Google Scholar] [CrossRef]
- Brown, J.; Hinkel, K.M.; Nelson, F. The Circumpolar Active Layer Monitoring (CALM) Program: Research Designs and Initial Results. Polar Geogr. 2000, 24, 166–258. [Google Scholar] [CrossRef]
- Jung, Y.T.; Park, S.-E.; Kim, H.-C. Observation of Spatial and Temporal Patterns of Seasonal Ground Deformation in Central Yakutia Using Time Series InSAR Data in the Freezing Season. Remote Sens. Environ. 2023, 293, 113615. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, A.; Cheng, X. Detection of Thermokarst Lake Drainage Events in the Northern Alaska Permafrost Region. Sci. Total Environ. 2022, 807, 150828. [Google Scholar] [CrossRef]
Study Region | Time Range | Path-Frame | Acquisitions | Interferograms |
---|---|---|---|---|
North Slope (Alaska) | 25-06-2018 to 29-09-2018 | 44–357 | 37 | 114 |
20-06-2019 to 24-09-2019 | ||||
14-06-2020 to 30-09-2020 | ||||
21-06-2021 to 25-09-2021 | ||||
27-06-2018 to 01-10-2018 | 73–356 | 35 | 114 | |
22-06-2019 to 14-09-2019 | ||||
16-06-2020 to 20-09-2020 | ||||
23-06-2021 to 27-09-2021 | ||||
17-06-2018 to 09-09-2018 | 102–356 | 33 | 115 | |
12-06-2019 to 28-09-2019 | ||||
18-06-2020 to 22-09-2020 | ||||
07-07-2021 to 29-09-2021 | ||||
Northern Great Bear Lake (Canada) | 10-06-2018 to 14-09-2018 | 166–217 | 39 | 128 |
05-06-2019 to 03-10-2019 | ||||
11-06-2020 to 09-10-2020 | ||||
06-06-2021 to 16-10-2021 | ||||
Southern Angikuni Lake (Canada) | 16-06-2018 to 02-10-2018 | 165–199 | 39 | 157 |
11-06-2019 to 09-10-2019 | ||||
17-06-2020 to 15-10-2020 | ||||
12-06-2021 to 10-10-2021 |
Site Average Annual End-of-Season Thaw Depth (ALT)/cm | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|
U1 | 38 | 47 | 45 | 31 |
U2 | 37 | 43 | 42 | 34 |
Mean | 37.5 | 45 | 43.5 | 32.5 |
InSAR Average Displacement/mm | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|
Starting of the thawing season | 0 | 54.34 | 21.23 | 6.44 |
Ending of the thawing season | −57.87 | −49.98 | −42.79 | −12.06 |
Mean seasonal displacement | −57.87 | −104.32 | −64.02 | −18.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Wang, C.; Tang, Y.; Zou, L.; Yu, P.; Li, T.; Zhang, H. North American Circum-Arctic Permafrost Degradation Observation Using Sentinel-1 InSAR Data. Remote Sens. 2024, 16, 2809. https://doi.org/10.3390/rs16152809
Guan S, Wang C, Tang Y, Zou L, Yu P, Li T, Zhang H. North American Circum-Arctic Permafrost Degradation Observation Using Sentinel-1 InSAR Data. Remote Sensing. 2024; 16(15):2809. https://doi.org/10.3390/rs16152809
Chicago/Turabian StyleGuan, Shaoyang, Chao Wang, Yixian Tang, Lichuan Zou, Peichen Yu, Tianyang Li, and Hong Zhang. 2024. "North American Circum-Arctic Permafrost Degradation Observation Using Sentinel-1 InSAR Data" Remote Sensing 16, no. 15: 2809. https://doi.org/10.3390/rs16152809
APA StyleGuan, S., Wang, C., Tang, Y., Zou, L., Yu, P., Li, T., & Zhang, H. (2024). North American Circum-Arctic Permafrost Degradation Observation Using Sentinel-1 InSAR Data. Remote Sensing, 16(15), 2809. https://doi.org/10.3390/rs16152809