A Power Combiner–Splitter Based on a Rat-Race Coupler for an IQ Mixer in Synthetic Aperture Radar Applications
Abstract
:1. Introduction
2. Design and Simulation
3. Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Shimada, M.; Xu, F. Recent Advances in Synthetic Aperture Radar Remote Sensing-Systems, Data Processing, and Applications, data processing, and applications. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2013–2016. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, 1st ed.; Artech House: Norwood, MA, USA, 1981; pp. 5–12. [Google Scholar]
- Sumantyo, J.T.S.; Chua, M.Y.; Santosa, C.E.; Izumi, Y. Airborne Circularly Polarized SAR Theory, System Design, Hardware Implementation, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 83–108. [Google Scholar]
- Jorgesen, D. IQ/IR/SSB Mixer Primer. Available online: https://markimicrowave.com/technical-resources/white-papers/iq-ir-ssb-mixer-primer/ (accessed on 12 June 2024).
- Ozdemir, C. Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, 2nd ed.; Wiley: Hoboken, NJ, USA, 2021; pp. 88–91. [Google Scholar]
- Garg, R.; Bahl, I.; Bozzi, M. Microstrip Lines and Slotlines, 3rd ed.; Artech House: Boston, MA, USA; London, UK, 2013; pp. 46–53. [Google Scholar]
- Lim, J.; Lee, S.; Kim, C.; Park, J.; Ahn, D.; Nam, S. A 4.1 Unequal Wilkinson Power Divider. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 124–126. [Google Scholar]
- Timari, A.; Pattapu, U.; Das, S. A Wideband 1:2 T-Junction Power Divider for Antenna Array with Optimum Results. In Proceedings of the 2018 the 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, 9–11 February 2018. [Google Scholar]
- Marki Microwave, Power Dividers & Directional Couplers Primer. Available online: https://markimicrowave.com/technical-resources/white-papers/power-dividers-directional-couplers-primer/ (accessed on 30 April 2024).
- Midasala, V.; Bhavanam, S.N.; Odugu, N. Design of Equal Split Wilkinson Power Divider Using Genesys. In Proceedings of the 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 15–17 December 2016. [Google Scholar]
- Cheng, K.M.; Law, C. A Novel Approach to the Design and Implementation of Dual-Band Power Divider. IEEE Trans. Microw. Theory Technol. 2008, 56, 487–492. [Google Scholar] [CrossRef]
- Ardash, M.; Shukla, S.B.; Surendran, S.; Joyas, S.; Mukundan, K.K. Tri Band Wilkinson Power Combiner for NavIC Receiver. In Proceedings of the 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, India, 13–16 December 2021; pp. 909–912. [Google Scholar]
- El-Agamy, A.F.; Alieldin, A.; El-Akhdar, A.M.; Darwish, M. A Broadband Stripline Gysel High-Power Combiner for L-band Radar Applications. In Proceedings of the 2023 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 18–20 July 2023; pp. 581–584. [Google Scholar]
- Chen, J.; Miao, P.; Zhao, D. Analysis, Design and Modeling of Millimeter-Wave Wilkinson Power Combiner for 5G Phased Array. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- Darwish, A.M.; Qiu, J.X.; Viveiros, E.A.; Hung, H.A. Analysis, Novel 4-Way Combiner for Ka-Band AIGaN/GaN Power MMIC. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Roychowdhury, D.; Kitchen, J. Microstrip Power Combiners for V-Band Solid-State Power Amplifiers. In Proceedings of the 2020 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 26–28 May 2020; pp. 1–5. [Google Scholar]
- Ridzuan, N.N.; Malek, N.F.A.; Isa, F.N.M.; Isa, M.R.; Ivan, K.C.C.; Qasim, N. Design of Wilkinson power divider at 28 GHz for 5G applications. Indones. J. Electr. Eng. Comput. Sci. 2022, 26, 1444–1450. [Google Scholar]
- Kingsley, N.; Guerci, J.R. Radar rf Circuit Design, 2nd ed.; Artech House: Boston, MA, USA; London, UK, 2022; pp. 37–45. [Google Scholar]
- Ruhiyat, A.; Kurniawan, F.; Rohman, A. Resistor placement to enhance the isolation characteristic of C-band Wilkinson power divider. In Proceedings of the 9th International Seminar on Aerospace Science and Technology—ISAST 2022, Bogor, Indonesia, 22–23 November 2023. [Google Scholar]
- Giang, N.M.; Manh, L.D. A Simple Approach for Improving Bandwidth and Isolation of Wilkinson Power Divider. Radioengineering 2022, 31, 224–230. [Google Scholar] [CrossRef]
- MECA Electronics, Hybrid Coupler Basics. Available online: https://e-meca.com/blogs/news/hybrid-coupler-basics (accessed on 12 June 2024).
- Edwards, T.C.; Steer, M.B. Foundations for Microstrip Circuit Design, 4th ed.; John Wiley & Sons Inc.: West Sussex, UK, 2016; pp. 353–355. [Google Scholar]
- Marki Microwave, PD-0R510 Wilkinson Power Divider. Available online: https://markimicrowave.com/assets/2f207ebf-fd58-4023-9cbc-bbdc5974ba2a/PD-0R510-Wilkinson%20Power%20Divider.pdf (accessed on 8 June 2024).
- Marki Microwave, PD-0109 Wilkinson Power Divider. Available online: https://markimicrowave.com/assets/6cd87f8e-b8e1-4340-8d46-5b89dd5116fc/PD-0109-Wilkinson%20Power%20Divider.pdf (accessed on 8 June 2024).
- Pasternack, PE2026 Wilkinson Power Divider. Available online: https://www.pasternack.com/images/ProductPDF/PE2026.pdf (accessed on 8 June 2024).
- Pasternack, PE2026 Wilkinson Power Divider. Available online: https://www.pasternack.com/images/ProductPDF/PE2063.pdf (accessed on 8 June 2024).
- Mini-Circuits, ZFRSC-123-S+ 2 Ways Resistive Power Splitter. Available online: https://www.minicircuits.com/pdfs/ZFRSC-123-S+.pdf (accessed on 11 June 2024).
- Mini-Circuits, ZX10R-2-183-S+ 2 Ways Resistive Power Splitter. Available online: https://www.minicircuits.com/pdfs/ZX10R-2-183-S+.pdf (accessed on 11 June 2024).
Property | Typical Value |
---|---|
Permittivity () | 2.2 |
Dissipation factor () | 0.0009 |
Substrate thickness (h) | 0.51 mm |
Conductor thickness (t) | 0.035 mm |
Specification | Requirement Value |
---|---|
S11 | <−10 dB |
S22 | <−10 dB |
S33 | <−10 dB |
S32 | >−4 dB |
S12 | >−4 dB |
S31 | <−15 dB |
Amplitude Unbalance | <0.6 dB |
Phase Unbalance | <−5° dB |
Impedance | Width | Length () |
---|---|---|
= 50 | 1.6 mm | 10.4 mm |
= 35.15 | 0.9 mm | 10.6 mm |
Parameter | 5.425 GHz | 5 GHz | 5.575 GHz |
---|---|---|---|
−3.411 dB | −3.443 dB | −3.427 dB | |
−3.453 dB | −3.492 dB | −3.482 dB | |
Amplitude Unbalance | 0.042 dB | 0.049 dB | 0.055 dB |
−26.20 dB | −32.79 dB | −26.33 dB | |
−17.35 dB | −18.80 dB | −20.81 dB | |
−24.41 dB | −22.17 dB | −20.43 dB | |
47.60 | 42.48 | 37.39 | |
47.58 | 42.41 | 37.34 | |
Phase Unbalance | 0.02 | 0.07 | 0.05 |
Part Number | Type | Frequency (GHz) | Amplitude Unbalance (dB) | Phase Unbalance (°) | Insertion Loss (dB) | Isolation (dB) |
---|---|---|---|---|---|---|
PD-0R510 [23] | WPD | 0.5–10 | 0.1 | 1 | 3.9 | 22 |
PD-0109 [24] | WPD | 1–9 | 0.1 | 1 | 3.75 | 22 |
PE2026 [25] | WPD | 2–8 | 0.06 | 3 | 3.4 | 20 |
PE2063 [26] | Resistive | DC–12.4 | 0.4 | 2 | 6 | - |
ZFRSC-123-S+ [27] | Resistive | DC–12 | 0.11 | 1.4 | 9.5 | 19.5 |
ZX10R-2-183-S+ [28] | Resistive | DC–12 | 0.2 | 2 | 6.9 | 26 |
This Research | Coupler | 5.5 | 0.049 | 0.07 | 3.47 | 22.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruhiyat, A.; Kurniawan, F.; Apriono, C. A Power Combiner–Splitter Based on a Rat-Race Coupler for an IQ Mixer in Synthetic Aperture Radar Applications. Remote Sens. 2024, 16, 2386. https://doi.org/10.3390/rs16132386
Ruhiyat A, Kurniawan F, Apriono C. A Power Combiner–Splitter Based on a Rat-Race Coupler for an IQ Mixer in Synthetic Aperture Radar Applications. Remote Sensing. 2024; 16(13):2386. https://doi.org/10.3390/rs16132386
Chicago/Turabian StyleRuhiyat, Abdurrasyid, Farohaji Kurniawan, and Catur Apriono. 2024. "A Power Combiner–Splitter Based on a Rat-Race Coupler for an IQ Mixer in Synthetic Aperture Radar Applications" Remote Sensing 16, no. 13: 2386. https://doi.org/10.3390/rs16132386
APA StyleRuhiyat, A., Kurniawan, F., & Apriono, C. (2024). A Power Combiner–Splitter Based on a Rat-Race Coupler for an IQ Mixer in Synthetic Aperture Radar Applications. Remote Sensing, 16(13), 2386. https://doi.org/10.3390/rs16132386