Assessing Ice Break-Up Trends in Slave River Delta through Satellite Observations and Random Forest Modeling
Abstract
:1. Introduction
1.1. Study Area
1.2. Datasets and Preprocessing
1.2.1. Landsat Archives
1.2.2. Sentinel-2 Archives
2. Method
2.1. Random Forest Modeling
2.1.1. Feature Selection
2.1.2. Training and Modeling
2.1.3. Model Evaluation
2.1.4. SRD Trend Analysis
3. Results
3.1. RF Model Validation
3.2. Performance of the Model in a Different Area: Peace Athabasca Delta
3.3. Seasonal Dynamics of Ice and Water Fractions
3.4. Trend of Break-Up Onset
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prowse, T.D.; Beltaos, S. Climatic control of river-ice hydrology: A review. Hydrol. Process. 2002, 16, 805–822. [Google Scholar] [CrossRef]
- Brown, L.C.; Duguay, C.R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 2010, 34, 671–704. [Google Scholar] [CrossRef]
- Prowse, T.D. River-ice ecology. I: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 2001, 15, 1–16. [Google Scholar] [CrossRef]
- Prowse, T.D.; Brown, K. Hydro-ecological effects of changing Arctic River and lake ice covers: A review. Hydrol. Res. 2010, 41, 454–461. [Google Scholar] [CrossRef]
- Hampton, S.E.; Galloway, A.W.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R.; et al. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Denfeld, B.A.; Baulch, H.M.; del Giorgio, P.A.; Hampton, S.E.; Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes. Limnol. Oceanogr. Lett. 2018, 3, 117–131. [Google Scholar] [CrossRef]
- Lynch, A.J.; Taylor, W.W.; Smith, K.D. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries. J. Fish Biol. 2010, 77, 1764–1782. [Google Scholar] [CrossRef] [PubMed]
- Barrette, P.D.; Charlebois, L. Winter roads and climate adaptation: Prospective solutions through R&D. In Proceedings of the Transportation Association of Canada Conference—Innovation and Technology: Evolving Transportation, TAC 2018, Saskatoon, SK, Canada, 25 October 2018. [Google Scholar]
- Robertson, D.M.; Ragotzkie, R.A.; Magnuson, J.J. Lake ice records used to detect historical and future climatic changes. Clim. Chang. 1992, 21, 407–427. [Google Scholar] [CrossRef]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Ménard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. Int. J. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Dauginis, A.A.; Brown, L.C. Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing. Cryosphere 2021, 15, 4781–4805. [Google Scholar] [CrossRef]
- Rafat, A.; Kheyrollah Pour, H.; Spence, C.; Palmer, M.J.; MacLean, A. An analysis of ice growth and temperature dynamics in two Canadian subarctic lakes. Cold Reg. Sci. Technol. 2023, 210, 103808. [Google Scholar] [CrossRef]
- Fujisaki, A.; Wang, J.; Bai, X.; Leshkevich, G.; Lofgren, B. Model-simulated interannual variability of Lake Erie ice cover, circulation, and thermal structure in response to atmospheric forcing, 2003–2012. J. Geophys. Res. Ocean. 2013, 118, 4286–4304. [Google Scholar] [CrossRef]
- Cavaliere, E.; Fournier, I.B.; Hazuková, V.; Rue, G.P.; Sadro, S.; Berger, S.A.; Cotner, J.B.; Dugan, H.A.; Hampton, S.E.; Lottig, N.R.; et al. The lake ice continuum concept: Influence of winter conditions on energy and ecosystem dynamics. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006165. [Google Scholar] [CrossRef]
- Pouw, A.F.; Kheyrollah Pour, H.; MacLean, A. Mapping snow depth over lake ice in Canada’s sub-arctic using ground-penetrating radar. Cryosphere Discuss. 2022, 2022, 1–21. [Google Scholar]
- Adams, H.; Ye, J.; Persaud, B.; Slowinski, S.; Kheyrollah Pour, H.; Van Cappellen, P. Chlorophyll-a growth rates and related environmental variables in global temperate and cold-temperate lakes. Earth Syst. Sci. Data Discuss. 2021, 14, 1–30. [Google Scholar]
- Palecki, M.A.; Barry, R.G. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: A case study for Finland. J. Appl. Meteorol. Climatol. 1986, 25, 893–902. [Google Scholar] [CrossRef]
- Williams, S.G.; Stefan, H.G. Modeling of lake ice characteristics in North America using climate, geography, and lake bathymetry. J. Cold Reg. Eng. 2006, 20, 140–167. [Google Scholar] [CrossRef]
- Prowse, T.D.; Bonsal, B.R.; Duguay, C.R.; Lacroix, M.P. River-ice break-up/freeze-up: A review of climatic drivers, historical trends and future predictions. Ann. Glaciol. 2007, 46, 443–451. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Bowling, L.C.; Huber, M. Lake ice phenology of small lakes: Impacts of climate variability in the Great Lakes region. Glob. Planet. Chang. 2011, 76, 166–185. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 2007, 106, 492–507. [Google Scholar] [CrossRef]
- Attiah, G.; Kheyrollah Pour, H.; Scott, K.A. Lake Surface Temperature Dataset in the North Slave Region Retrieved from Landsat Satellite Series–1984 to 2021. Earth Syst. Sci. Data Discuss. 2022, 2022, 1–37. [Google Scholar]
- Kheyrollah Pour, H.; Duguay, C.R.; Scott, K.A.; Kang, K.K. Improvement of lake ice thickness retrieval from MODIS satellite data using a thermodynamic model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5956–5965. [Google Scholar] [CrossRef]
- Surdu, C.M.; Duguay, C.R.; Fernández Prieto, D. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations. Cryosphere 2016, 10, 941–960. [Google Scholar] [CrossRef]
- Scott, K.A.; Xu, L.; Kheyrollah Pour, H.K. Retrieval of ice/water observations from synthetic aperture radar imagery for use in lake ice data assimilation. J. Great Lakes Res. 2020, 46, 1521–1532. [Google Scholar] [CrossRef]
- Attiah, G.; Kheyrollah Pour, H.K.; Scott, K.A. Four decades of lake surface temperature in the Northwest Territories, Canada, using a lake-specific satellite-derived dataset. J. Hydrol. Reg. Stud. 2023, 50, 101571. [Google Scholar] [CrossRef]
- Barbieux, K.; Charitsi, A.; Merminod, B. Icy lakes extraction and water-ice classification using Landsat 8 OLI multispectral data. Int. J. Remote Sens. 2018, 39, 3646–3678. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. Int. J. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1468. [Google Scholar]
- Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 2016, 8, 666. [Google Scholar] [CrossRef]
- Wu, Y.; Duguay, C.R.; Xu, L. Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sens. Environ. 2021, 253, 112206. [Google Scholar] [CrossRef]
- Stonevicius, E.; Uselis, G.; Grendaite, D. Ice detection with Sentinel-1 SAR backscatter threshold in long sections of temperate climate rivers. Remote Sens. 2022, 14, 1627. [Google Scholar] [CrossRef]
- Chaouch, N.; Temimi, M.; Romanov, P.; Cabrera, R.; McKillop, G.; Khanbilvardi, R. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data. Hydrol. Process. 2014, 28, 62–73. [Google Scholar] [CrossRef]
- Kang, K.K.; Duguay, C.R.; Howell, S.E.L. Estimating ice phenology on large northern lakes from AMSR-E: Algorithm development and application to Great Bear Lake and Great Slave Lake, Canada. Cryosphere 2012, 6, 235–254. [Google Scholar] [CrossRef]
- Hoekstra, M.; Jiang, M.; Clausi, D.A.; Duguay, C. Lake ice-water classification of RADARSAT-2 images by integrating IRGS Segmentation with pixel-based random forest labeling. Remote Sens. 2020, 12, 1425. [Google Scholar] [CrossRef]
- Yang, X.; Pavelsky, T.M.; Bendezu, L.P.; Zhang, S. A Simple method to extract lake ice condition from Landsat images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4202010. [Google Scholar] [CrossRef]
- Sobiech, J.; Dierking, W. Observing lake-and river-ice decay with SAR: Advantages and limitations of the unsupervised k-means classification approach. Ann. Glaciol. 2013, 54, 65–72. [Google Scholar] [CrossRef]
- Singh, A.; Kalke, H.; Loewen, M.; Ray, N. River ice segmentation with deep learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7570–7579. [Google Scholar] [CrossRef]
- Heinilä, K.; Mattila, O.P.; Metsämäki, S.; Väkevä, S.; Luojus, K.; Schwaizer, G.; Koponen, S. A novel method for detecting lake ice cover using optical satellite data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102566. [Google Scholar] [CrossRef]
- Sola, D.; Scott, K.A. Efficient Shallow Network for River Ice Segmentation. Remote Sens. 2022, 14, 2378. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Rouse, W.R.; Blanken, P.D.; Bussières, N.; Walker, A.E.; Oswald, C.J.; Schertzer, W.M.; Spence, C. An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes. J. Hydrometeorol. 2008, 9, 1318–1333. [Google Scholar] [CrossRef]
- English, M.C.; Hill, R.B.; Stone, M.A.; Ormson, R. Geomorphological and botanical change on the outer Slave River Delta, NWT, before and after impoundment of the Peace River. Hydrol. Process. 1997, 11, 1707–1724. [Google Scholar] [CrossRef]
- Brock, B.E.; Yi, Y.; Clogg-Wright, K.P.; Edwards, T.W.; Wolfe, B.B. Multi-year landscape-scale assessment of lake water balances in the Slave River Delta, NWT, using water isotope tracers. J. Hydrol. 2009, 379, 81–91. [Google Scholar] [CrossRef]
- Beltaos, S.; Bonsal, B. Climate change impacts on Peace River ice thickness and implications to ice-jam flooding of Peace-Athabasca Delta, Canada. Cold Reg. Sci. Technol. 2021, 186, 103279. [Google Scholar] [CrossRef]
- Howell, S.E.; Brown, L.C.; Kang, K.K.; Duguay, C.R. Variability in ice phenology on great bear lake and great slave lake, northwest territories, canada, from seawinds/quikscat: 2000–2006. Remote Sens. Environ. 2009, 113, 816–834. [Google Scholar] [CrossRef]
- Ménard, P.; Duguay, C.R.; Flato, G.M.; Rouse, W.R. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada. Hydrol. Process. 2002, 16, 3691–3706. [Google Scholar] [CrossRef]
- Evans, M.S.; Muir, D.C. Persistent organic contaminants in sediments and biota of Great Slave Lake, Canada: Slave River and long-range atmospheric source influences. J. Great Lakes Res. 2016, 42, 233–247. [Google Scholar] [CrossRef]
- Schertzer, W.M.; Rouse, W.R.; Blanken, P.D.; Walker, A.E.; Lam, D.C.L.; León, L. Interannual Variability of the Thermal Components and Bulk Heat Exchange of Great Slave Lake. In Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience; Woo, M.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2, pp. 197–219. [Google Scholar]
- Chu, T.; Lindenschmidt, K.E. Integration of space-borne and air-borne data in monitoring river ice processes in the Slave River, Canada. Remote Sens. Environ. 2016, 181, 65–81. [Google Scholar] [CrossRef]
- Dubé, M.G.; Wilson, J.E. Accumulated state assessment of the Peace-Athabasca-Slave River system. Integr. Environ. Assess. Manag. 2013, 9, 405–425. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Nicodemus, K.K. On the stability and ranking of predictors from random forest variable importance measures. Brief. Bioinform. 2011, 12, 369–373. [Google Scholar] [CrossRef]
- Scott, K.A.; Ashouri, Z.; Buehner, M.; Pogson, L.; Carrieres, T. Assimilation of SAR data in the marginal ice zone. In Proceedings of the IEEE Radar Conference (RadarCon13), Ottawa, ON, Canada, 29 April–3 May 2013; pp. 1–5. [Google Scholar]
- Masnan, M.J.; Mahat, N.I.; Shakaff, A.Y.M.; Abdullah, A.H.; Zakaria, N.Z.I.; Yusuf, N.; Subari, N.; Zakaria, A.; Aziz, A.H.A. Understanding Mahalanobis distance criterion for feature selection. In Proceedings of the AIP Conference, Penang, Malaysia, 15 May 2015. [Google Scholar]
- Chatterjee, S.; Simonoff, J.S. Handbook of Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Chavez Jr, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Tomé, A.R.; Miranda, P.M.A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 2004, 31, L02207. [Google Scholar] [CrossRef]
- Brock, B.E.; Wolfe, B.B.; Edwards, T.W.D. Spatial and temporal perspectives on spring break-up flooding in the Slave River Delta, NWT. Hydrol. Process. Int. J. 2008, 22, 4058–4407. [Google Scholar] [CrossRef]
- Lindenschmidt, K.E.; Das, A. A geospatial model to determine patterns of ice cover breakup along the Slave River. Can. J. Civ. Eng. 2015, 42, 675–685. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the climate in 2015. Bull. Am. Meteorol. Soc. 2016, 97, Si-S275. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2016. Bull. Am. Meteorol. Soc. 2017, 98, Si-S280. [Google Scholar] [CrossRef]
- Anderson, W.L.; Robertson, D.M.; Magnuson, J.J. Evidence of recent warming and El Niño-related variations in ice breakup of Wisconsin lakes. Limnol. Oceanogr. 1996, 41, 815–821. [Google Scholar] [CrossRef]
- Robertson, D.M.; Wynne, R.H.; Chang, W.Y. Influence of El Niño on lake and river ice cover in the Northern Hemisphere from 1900 to 1995. Int. Ver. Für Theor. Angew. Limnol. Verhandlungen 2000, 27, 2784–2788. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
Sentinel-2 | Landsat-8 | Landsat-5 | ||||||
---|---|---|---|---|---|---|---|---|
Band | Wavelength (Micrometers) | Spatial Resolution (Meters) | Band | Wavelength (Micrometers) | Spatial Resolution (Meters) | Band | Wavelength (Micrometers) | Spatial Resolution (Meters) |
B1 | 0.443 | 60 | B1 | 0.43–0.45 | 30 | B1 | 0.45–0.52 | 30 |
B2 | 0.490 | 10 | B2 | 0.45–0.51 | 30 | B2 | 0.52–0.60 | 30 |
B3 | 0.560 | 10 | B3 | 0.53–0.59 | 30 | B3 | 0.63–0.69 | 30 |
B4 | 0.665 | 10 | B4 | 0.64–0.67 | 30 | B4 | 0.76–0.90 | 30 |
B5 | 0.705 | 20 | B5 | 0.85–0.88 | 30 | B5 | 1.55–1.75 | 30 |
B6 | 0.740 | 20 | B6 | 1.57–1.65 | 30 | B6 | 10.40–12.5 | 120 |
B7 | 0.783 | 20 | B7 | 2.11–2.29 | 30 | B7 | 2.08–2.35 | 30 |
B8 | 0.842 | 10 | B8 | 0.50–0.68 | 15 | |||
B8a | 0.865 | 20 | B9 | 1.36–1.38 | 30 | |||
B9 | 0.940 | 60 | B10 | 10.6–11.19 | 100 | |||
B10 | 0.137 | 60 | B11 | 11.50–12.51 | 100 | |||
B11 | 0.161 | 20 | ||||||
B12 | 0.219 | 20 |
Sentinel Bands | Landsat Bands | ||
---|---|---|---|
SWIR3 | 0.861 | ultra blue | 0.852 |
ultra blue | 0.860 | blue | 0.851 |
green | 0.853 | green | 0.843 |
blue | 0.851 | NIR | 0.823 |
red edge3 | 0.850 | red | 0.816 |
NIR | 0.849 | thermal 1 | 0.779 |
red edge2 | 0.842 | thermal 2 | 0.744 |
red | 0.838 | ||
red edge1 | 0.834 | ||
narrow NIR | 0.830 |
Sentinel Model’s Features | Landsat Model’s Features |
---|---|
Local Average Gradient of Red | Local Average Gradient of Red |
ultra blue | ultra blue |
red | red |
NIR | NIR |
narrow NIR | WICI |
WICI | thermal 1 |
SWIR1 | |
SWIR2 |
Evaluation Type | Landsat Model | Sentinel Model |
---|---|---|
Training Accuracy | 99.71% | 97.62% |
Testing Accuracy | 97.8% | 91.53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moalemi, I.; Kheyrollah Pour, H.; Scott, K.A. Assessing Ice Break-Up Trends in Slave River Delta through Satellite Observations and Random Forest Modeling. Remote Sens. 2024, 16, 2244. https://doi.org/10.3390/rs16122244
Moalemi I, Kheyrollah Pour H, Scott KA. Assessing Ice Break-Up Trends in Slave River Delta through Satellite Observations and Random Forest Modeling. Remote Sensing. 2024; 16(12):2244. https://doi.org/10.3390/rs16122244
Chicago/Turabian StyleMoalemi, Ida, Homa Kheyrollah Pour, and K. Andrea Scott. 2024. "Assessing Ice Break-Up Trends in Slave River Delta through Satellite Observations and Random Forest Modeling" Remote Sensing 16, no. 12: 2244. https://doi.org/10.3390/rs16122244
APA StyleMoalemi, I., Kheyrollah Pour, H., & Scott, K. A. (2024). Assessing Ice Break-Up Trends in Slave River Delta through Satellite Observations and Random Forest Modeling. Remote Sensing, 16(12), 2244. https://doi.org/10.3390/rs16122244