Eddy Characteristics and Vertical Structure in the Bay of Bengal during Different Monsoon Regimes
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Spatial Eddy Characteristics in the Bay of Bengal
3.2. Temporal Eddy Characteristics in the Bay of Bengal
3.3. Eddy Characteristics as a Function of Depth
3.4. Coastal Kelvin Wave and Eddy Interactions
3.5. Wavelet Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shankar, D.; Vinayachandran, P.; Unnikrishnan, A. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Cheng, X.; Xie, S.-P.; McCreary, J.P.; Qi, Y.; Du, Y. Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. Oceans 2013, 118, 816–830. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, Y.; Xie, Q.; Wang, D. Origins of Eddy Kinetic Energy in the Bay of Bengal. J. Geophys. Res. Oceans 2018, 123, 2097–2115. [Google Scholar] [CrossRef]
- Kurien, P.; Ikeda, M.; Valsala, V.K. Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations. J. Oceanogr. 2010, 66, 273–289. [Google Scholar] [CrossRef]
- Murty, V.S.N.; Sarma, Y.V.B.; Rao, D.P.; Murty, C.S. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon. J. Mar. Res. 1992, 50, 207–228. [Google Scholar] [CrossRef]
- Sreenivas, P.; Gnanaseelan, C.; Prasad, K. Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal. Glob. Planet. Chang. 2012, 80, 215–225. [Google Scholar] [CrossRef]
- Rao, R.; Kumar, M.G.; Ravichandran, M.; Rao, A.; Gopalakrishna, V.; Thadathil, P. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 1–13. [Google Scholar] [CrossRef]
- Nienhaus, M.J.; Subrahmanyam, B.; Murty, V.S.N. Altimetric Observations and Model Simulations of Coastal Kelvin Waves in the Bay of Bengal. Mar. Geodesy 2012, 35, 190–216. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Gangopadhyay, A.; Jena, B.K.; Venkatesan, R.; Gawarkiewicz, G. Seasonal and Tidal Variability of Surface Currents in the Western Andaman Sea Using HF Radars and Buoy Observations During 2016–2017. IEEE Trans. Geosci. Remote. Sens. 2020, 59, 7235–7244. [Google Scholar] [CrossRef]
- Greaser, S.R.; Subrahmanyam, B.; Trott, C.B.; Roman-Stork, H.L. Interactions Between Mesoscale Eddies and Synoptic Oscillations in the Bay of Bengal During the Strong Monsoon of 2019. J. Geophys. Res. Ocean. 2020, 125, e2020JC016772. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Ashok, K.; Chan, W.; Motoi, T.; Yamagata, T. Decadal variability of the Indian Ocean dipole. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gadgil, S.; Asha, G. Intraseasonal Variation of the Summer Monsoon. J. Meteorol. Soc. Jpn. Ser. II 1992, 70, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Gadgil, S.; Joseph, P.V. On breaks of the Indian monsoon. J. Earth Syst. Sci. 2003, 112, 529–558. [Google Scholar] [CrossRef] [Green Version]
- Goswami, B.N.; Ajayamohan, R.S.; Xavier, P.K.; Sengupta, D. Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M. Analysis of Summer Monsoon Fluctuations over India. J. Meteorol. Soc. Jpn. Ser. II 1976, 54, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, B.; Roman-Stork, H.L.; Murty, V.S.N. Response of the Bay of Bengal to 3-7-Day Synoptic Oscillations During the Southwest Monsoon of 2019. J. Geophys. Res. Oceans 2020, 125, e2020JC016200. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Hou, Y. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res. 2012, 47, 178–185. [Google Scholar] [CrossRef]
- Cui, W.; Yang, J.; Ma, Y. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22–year altimetry data. Acta Oceanol. Sin. 2016, 35, 16–27. [Google Scholar] [CrossRef]
- Dandapat, S.; Chakraborty, A. Mesoscale eddies in the Western Bay of Bengal as observed from Satellite Altimetry in 1993–2014: Statistical characteristics, variability and three-dimensional properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5044–5054. [Google Scholar] [CrossRef]
- Roman-Stork, H.L.; Subrahmanyam, B.; Trott, C.B. Mesoscale eddy variability and its linkage to deep convection over the Bay of Bengal using satellite altimetric observations. Adv. Space Res. 2019, 68, 378–400. [Google Scholar] [CrossRef]
- Patnaik, K.V.K.R.K.; Maneesha, K.; Sadhuram, Y.; Prasad, K.V.S.R.; Murty, T.V.R.; Rao, V.B. East India Coastal Current induced eddies and their interaction with tropical storms over Bay of Bengal. J. Oper. Oceanogr. 2014, 7, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Gulakaram, V.S.; Vissa, N.K.; Bhaskaran, P.K. Role of mesoscale eddies on atmospheric convection during summer monsoon season over the Bay of Bengal: A case study. J. Ocean Eng. Sci. 2018, 3, 343–354. [Google Scholar] [CrossRef]
- Schott, F.A.; McCreary, J.P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Murty, V. Variability of the Somali Current and eddies during the southwest monsoon regimes. Dyn. Atmos. Oceans 2017, 79, 43–55. [Google Scholar] [CrossRef]
- Mawren, D.; Reason, C.J.C. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean. J. Geophys. Res. Oceans 2017, 122, 2012–2028. [Google Scholar] [CrossRef]
- Jangir, B.; Swain, D.; Ghose, S. Influence of eddies and tropical cyclone heat potential on intensity changes of tropical cyclones in the North Indian Ocean. Adv. Space Res. 2020, 68, 773–786. [Google Scholar] [CrossRef]
- Huang, M.; Liang, X.; Zhu, Y.; Liu, Y.; Weisberg, R.H. Eddies Connect the Tropical Atlantic Ocean and the Gulf of Mexico. Geophys. Res. Lett. 2021, 48, e2020GL091277. [Google Scholar] [CrossRef]
- Capet, A.; Taburet, G.; Mason, E.; Pujol, M.I.; Grégoire, M.; Rio, M.-H. Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea. Front. Mar. Sci. 2022, 9, 842. [Google Scholar] [CrossRef]
- Mason, E.; Ruiz, S.; Bourdalle-Badie, R.; Reffray, G.; García-Sotillo, M.; Pascual, A. New insight into 3-D mesoscale eddy properties from CMEMS operational models in the western Mediterranean. Ocean Sci. 2019, 15, 1111–1131. [Google Scholar] [CrossRef] [Green Version]
- Sanikommu, S.; Toye, H.; Zhan, P.; Langodan, S.; Krokos, G.; Knio, O.; Hoteit, I. Impact of Atmospheric and Model Physics Perturbations On a High-Resolution Ensemble Data Assimilation System of the Red Sea. J. Geophys. Res. Oceans 2020, 125, e2019JC015611. [Google Scholar] [CrossRef]
- Rocha, C.B.; Simoes-Sousa, I.T. Compact Mesoscale Eddies in the South Brazil Bight. Remote Sens. 2022, 14, 5781. [Google Scholar] [CrossRef]
- Vu, B.L.; Stegner, A.; Charles, E.; Faugere, Y. (2019, January). An OSSE to quantify the reliability and the accuracy of au-tomatic eddy detection performed on gridded altimetric product. In Proceedings of the 21st EGU General Assembly, EGU2019, Vienna, Austria, 7–12 April 2019. In Geophysical Research Abstracts; EGU: Gottingen, Germany, 2019; Volume 21. [Google Scholar]
- Barboni, A.; Lazar, A.; Stegner, A.; Moschos, E. Lagrangian eddy tracking reveals the Eratosthenes anticyclonic attractor in the eastern Levantine Basin. Ocean Sci. 2021, 17, 1231–1250. [Google Scholar] [CrossRef]
- Stegner, A.; Le Vu, B.; Dumas, F.; Ghannami, M.A.; Nicolle, A.; Durand, C.; Faugere, Y. Cyclone-Anticyclone Asymmetry of Eddy Detection on Gridded Altimetry Product in the Mediterranean Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017475. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, X. Characteristics of Eulerian mesoscale eddies in the Gulf of Mexico. Front. Mar. Sci. 2022, 9, 2655. [Google Scholar] [CrossRef]
- Brokaw, R.J.; Subrahmanyam, B.; Trott, C.B.; Chaigneau, A. Eddy Surface Characteristics and Vertical Structure in the Gulf of Mexico from Satellite Observations and Model Simulations. J. Geophys. Res. Oceans 2020, 125, e2019JC015538. [Google Scholar] [CrossRef]
- Todd, R.E. Equatorial Circulation in the Western Indian Ocean During Onset of the 2018 Summer Monsoon and Links to the Bay of Bengal. Geophys. Res. Lett. 2020, 47, e2020GL087215. [Google Scholar] [CrossRef]
- Shoup, C.G.; Roman-Stork, H.L.; Subrahmanyam, B. Analysis of Coupled Oceanic and Atmospheric Preconditioning for Primary Madden-Julian Oscillation Events Across ENSO Phases. J. Geophys. Res. Oceans 2020, 125, e2020JC016358. [Google Scholar] [CrossRef]
- Feng, J.; Qiu, Y.; Dong, C.; Ni, X.; Lin, W.; Teng, H.; Pan, A. Interannual Variabilities of the Southern Bay of Bengal Cold Pool Associated with the El Niño–Southern Oscillation. Remote Sens. 2022, 14, 6169. [Google Scholar] [CrossRef]
- Ayouche, A.; De Marez, C.; Morvan, M.; L’Hegaret, P.; Carton, X.; Le Vu, B.; Stegner, A. Structure and Dynamics of the Ras al Hadd Oceanic Dipole in the Arabian Sea. Oceans 2021, 2, 105–125. [Google Scholar] [CrossRef]
- Roman-Stork, H.L.; Subrahmanyam, B.; Murty, V.S.N. The Role of Salinity in the Southeastern Arabian Sea in Determining Monsoon Onset and Strength. J. Geophys. Res. Oceans 2020, 125, e2019JC015592. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Nadal, F.; Ducet, N. An Improved Mapping Method of Multisatellite Altimeter Data. J. Atmos. Ocean. Technol. 1998, 15, 522–534. [Google Scholar] [CrossRef]
- Ducet, N.; Le Traon, P.-Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Oceans 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Verezemskaya, P.; Barnier, B.; Gulev, S.K.; Gladyshev, S.; Molines, J.; Gladyshev, V.; Lellouche, J.; Gavrikov, A. Assessing Eddying (1/12°) Ocean Reanalysis GLORYS12 Using the 14-yr Instrumental Record From 59.5° N Section in the Atlantic. J. Geophys. Res. Oceans 2021, 126, e2020JC016317. [Google Scholar] [CrossRef]
- Berrisford, P.; Kållberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Poli, P.; Sato, H. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Murty, V.S.N.; Subrahmanyam, B.; Tilvi, V.; O’Brien, J.J. A new technique for the estimation of sea surface salinity in the tropical Indian Ocean from OLR. J. Geophys. Res. Atmos. 2004, 109, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Girishkumar, M.S.; Joseph, J.; Thangaprakash, V.P.; Pottapinjara, V.; McPhaden, M.J. Mixed Layer Temperature Budget for the Northward Propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central Bay of Bengal. J. Geophys. Res. Oceans 2017, 122, 8841–8854. [Google Scholar] [CrossRef]
- Roman-Stork, H.L.; Subrahmanyam, B.; Murty, V. Quasi-biweekly oscillations in the Bay of Bengal in observations and model simulations. Deep. Sea Res. Part II: Top. Stud. Oceanogr. 2019, 168, 104609. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Fore, A.G.; Yueh, S.H.; Tang, W.; Stiles, B.W.; Hayashi, A.K. Combined Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With SMAP. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7396–7404. [Google Scholar] [CrossRef]
- Roman-Stork, H.L.; Subrahmanyam, B.; Trott, C.B. Monitoring Intraseasonal Oscillations in the Indian Ocean Using Satellite Observations. J. Geophys. Res. Oceans 2020, 125, 1–22. [Google Scholar] [CrossRef]
- Nyadjro, E.S.; Subrahmanyam, B.; Murty, V.S.N.; Shriver, J.F. The role of salinity on the dynamics of the Arabian Sea mini warm pool. J. Geophys. Res. Atmos. 2012, 117, 1–12. [Google Scholar] [CrossRef]
- Dayan, H.; McAdam, R.; Juza, M.; Masina, S.; Speich, S. Marine heat waves in the Mediterranean Sea: An assessment from the surface to the subsurface to meet national needs. Front. Mar. Sci. 2023, 10, 142. [Google Scholar] [CrossRef]
- Sérazin, G.; Jaymond, A.; Leroux, S.; Penduff, T.; Bessières, L.; Llovel, W.; Barnier, B.; Molines, J.-M.; Terray, L. A global probabilistic study of the ocean heat content low-frequency variability: Atmospheric forcing versus oceanic chaos. Geophys. Res. Lett. 2017, 44, 5580–5589. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Cheng, L.; Abraham, J.; Li, C. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Clim. Dyn. 2017, 50, 2471–2487. [Google Scholar] [CrossRef] [Green Version]
- Levitus, S.; Antonov, J.I.; Baranova, O.K.; Boyer, T.P.; Coleman, C.L.; Garcia, H.E.; Grodsky, A.I.; Johnson, D.R.; Mishonov, A.V.; O’Brien, T.D.; et al. World ocean database 2013. NOAA Atlas NESDIS 2013, 72. [Google Scholar] [CrossRef]
- Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Sazama, C.L.; Seidov, D.; Smolyar, I.; Yarosh, E.S.; Zweng, M.M. The World Ocean Database. Data Sci. J. 2013, 12, WDS229–WDS234. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.S.; Sutton, R.; Gregory, J.M. The impact of salinity perturbations on the future uptake of heat by the Atlantic Ocean. Geophys. Res. Lett. 2014, 41, 9072–9079. [Google Scholar] [CrossRef] [Green Version]
- Horii, T.; Ueki, I.; Ando, K.; Mizuno, K. Eastern Indian Ocean warming associated with the negative Indian Ocean dipole: A case study of the 2010 event. J. Geophys. Res. Oceans 2013, 118, 536–549. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Chaigneau, A.; Eldin, G.; Dewitte, B. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog. Oceanogr. 2009, 83, 117–123. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B. Detection of intraseasonal oscillations in the Bay of Bengal using altimetry. Atmos. Sci. Lett. 2019, 20, e920. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Sil, S.; Pramanik, S.; Arunraj, K.S.; Jena, B.K. Characteristics and evolution of a coastal mesoscale eddy in the Western Bay of Bengal monitored by high-frequency radars. Dyn. Atmos. Oceans 2019, 88, 101107. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, A.; Jin, B.; Wang, X.; Zhang, X.; Zhang, L. Seasonal variability of eddy kinetic energy in the north Indian Ocean. Front. Mar. Sci. 2022, 9, 2268. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Chaigneau, A.; Roman-Stork, H.L. Eddy-Induced Temperature and Salinity Variability in the Arabian Sea. Geophys. Res. Lett. 2019, 46, 2734–2742. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Krishnamurti, T.; Jana, S.; Krishnamurti, R.; Kumar, V.; Deepa, R.; Papa, F.; Bourassa, M.A.; Ali, M. Monsoonal intraseasonal oscillations in the ocean heat content over the surface layers of the Bay of Bengal. J. Mar. Syst. 2017, 167, 19–32. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Roman-Stork, H.L.; Murty, V.S.N.; Gnanaseelan, C. Variability of Intraseasonal Oscillations and Synoptic Signals in Sea Surface Salinity in the Bay of Bengal. J. Clim. 2019, 32, 6703–6728. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Trott, C.B.; Murty, V.S.N. Detection of Intraseasonal Oscillations in SMAP Salinity in the Bay of Bengal. Geophys. Res. Lett. 2018, 45, 7057–7065. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Burns, J.M.; Subrahmanyam, B.; Murty, V.S.N. On the dynamics of the S ri L anka D ome in the B ay of B engal. J. Geophys. Res. Oceans 2017, 122, 7737–7750. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trott, C.B.; Subrahmanyam, B. Eddy Characteristics and Vertical Structure in the Bay of Bengal during Different Monsoon Regimes. Remote Sens. 2023, 15, 1079. https://doi.org/10.3390/rs15041079
Trott CB, Subrahmanyam B. Eddy Characteristics and Vertical Structure in the Bay of Bengal during Different Monsoon Regimes. Remote Sensing. 2023; 15(4):1079. https://doi.org/10.3390/rs15041079
Chicago/Turabian StyleTrott, Corinne B., and Bulusu Subrahmanyam. 2023. "Eddy Characteristics and Vertical Structure in the Bay of Bengal during Different Monsoon Regimes" Remote Sensing 15, no. 4: 1079. https://doi.org/10.3390/rs15041079
APA StyleTrott, C. B., & Subrahmanyam, B. (2023). Eddy Characteristics and Vertical Structure in the Bay of Bengal during Different Monsoon Regimes. Remote Sensing, 15(4), 1079. https://doi.org/10.3390/rs15041079